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Abstract

Suppose the probability measures (µn) on Θ obey a large deviation principle
(LDP). Suppose too that µn is concentrated on Θn and that, for θ(n) ∈ Θn with
θ(n) → θ ∈ Θ, the probability measures (Pn

θ(n)) on X also obey an LDP. The main
purpose of this paper is to give conditions which allow an LDP for the mixtures
(Pn), given by Pn(A) =

∫
Pn

θ (A)dµn(θ), to be deduced. Chaganty (1997) also
considered this question, but under stronger assumptions. The treatment here
follows that of Dinwoodie and Zabell (1992) who, motivated by exchangeability,
considered the case where µn does not vary with n.

1 Introduction and motivation

Let µn be a (mixing) probability measure on the Borel σ-algebra of a topological space

Θ, concentrated on (the measurable set) Θn. For each θ ∈ Θn, let P n
θ be a probability

measure on the Borel σ-algebra of the topological space X for which the map θ → P n
θ (A) is

measurable on Θn for every measurable A ⊂ X. For definiteness, let P n
θ be given by some

fixed probability measure on X when θ /∈ Θn. Based on these, the joint distribution, P̃ n,

and the marginal distribution, P n, obtained by mixing over θ, have the usual definitions:

dP̃ n(θ, x) = dP n
θ (x)dµn(θ) and dP n(x) =

∫

Θ

dP n
θ (x)dµn(θ) =

∫

Θn

dP n
θ (x)dµn(θ).

Throughout, Θ and X are assumed to be Hausdorff (i.e. distinct points can be separated

by disjoint open sets) and Θ is assumed to be first countable (i.e. for each θ there is a

countable collection of neighbourhoods such that every neighbourhood of θ contains one

of this collection), which implies that convergence in Θ can be described using sequences.

However, X is not assumed to be first countable.

The sequence of probability measures (P n) (on the Borel σ-algebra of the topological

space X) obeys a large deviation principle (LDP) if there is a lower semicontinuous

non-negative function λ (a rate function) such that for every closed F and open G

lim sup
log P n(F )

n
≤ − inf

y∈F
λ(x) and lim inf

log P n(G)

n
≥ − inf

y∈G
λ(x).
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The rate function λ is called ‘good’ (or ‘proper’) if for every finite β the set {x : λ(x) ≤ β}
is compact. The sequence satisfies a weak LDP if the upper bound holds for compact,

rather than closed, F . Furthermore, the sequence of probability measures (P n) is said to

be exponentially tight if for every α > 0 there is a set Oα whose complement is compact

with

lim sup
log P n(Oα)

n
< −α. (1)

The main idea is to combine large deviation results for (P n
θ ) and (µn) to give large

deviation results for the marginal distributions (P n). The treatment draws heavily on

that in Section 2 of Dinwoodie and Zabell (1992), who consider the case where µn does

not depend on n. They used their results to consider large deviations for exchangeable

sequences in rather general spaces; this motivation led naturally to the assumption that

µn was independent of n. The basic framework adopted here is used by Chaganty (1997),

who also provides a number of statistical applications, but the treatment here is more

general in two main ways. Firstly, the use of Θn rather than Θ is needed to deal with

our motivating example, is natural, and produces genuine complication in the argument.

Secondly, Chaganty (1997) confines attention to cases where Θ and X are both Polish,

whereas here greater topological generality, in the spirit of Dinwoodie and Zabell (1992),

is maintained. A final, arguably less significant, difference is that the focus in Chaganty

(1997) is on the LDP for the joint distributions (P̃ n), rather than the marginals (P n).

Chaganty’s main result will be a consequence of the results here.

The motivating example for developing these results arose in the study of random

graphs. The classical random graph is very well understood, but fails to match up to the

graphs occurring in many applications. Recently, Cannings and Penman (2003) suggested

a model with more flexibility; see also Penman (1998). Suppose a graph is to have n

vertices. Then, to produce random graphs with a correlation structure between edge

occurrences, Cannings and Penman (2003) proposed that each vertex is independently

assigned one of a number of colours, and the probability that an edge arises depends on

the colours of its two vertices. The problem posed is to find an LDP for the number of

edges, as n becomes large. This falls exactly into the framework proposed. To elucidate,

consider the graph with n vertices. Let the proportions of these vertices of the various

possible colours be θ; then µn is the distribution θ. Given n and θ the number of edges is

obtained as the sum of independent (but not identically distributed) random variables;

this specifies P n
θ . Note that for finite n the possible values of θ are confined to those with

nθ containing integers; this defines Θn here. The details of this application are discussed

in Biggins and Penman (2003).

The next section contains the statements of the main results. The following two con-

tain their proofs and those of various intermediate results. A brief final section mentions

some possible directions for further work.

2 The main results

For easier references in the statement and proofs, various assumptions will be labelled.

The first two concern the LDP and the exponential tightness for the mixing distributions
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(µn) on Θ.

ldpµ: (µn) satisfies an LDP with rate ψ.

tightµ: (µn) is exponentially tight.

When Θ is compact tightµ holds automatically.

The third assumption is an LDP statement for the conditional distributions. In Din-

woodie and Zabell (1992), this kind of condition is called exponential continuity. To

state it, a little more notation is needed. Let Θ̃ be the limit set of sequences with the

nth member from Θn; thus

Θ̃ = {θ ∈ Θ : ∃ θ(n) ∈ Θn, θ(n) → θ}.

It is easy to check that Θ̃ is closed; see Lemma 10 in the next section. Most applications

will have Θ̃ = Θ.

exp-cty: Θ̃ is non-empty and whenever θ(n) ∈ Θn and θ(n) → θ ∈ Θ̃, (P n
θ(n))

satisfies an LDP with rate λθ.

When θ /∈ Θ̃, let λθ(x) = ∞ for all x. Since λθ is a rate function it is lower semicontinuous

on X for each θ. The fourth assumption is in similar vein.

lsc: The function λ, defined by

λ(x) = inf{λθ(x) + ψ(θ) : θ ∈ Θ}, (2)

is lower semicontinuous on X.

Recall that a topological space is regular if for every open U containing x there is an

open O also containing x with its closure contained in U .

Theorem 1 Suppose ldpµ, tightµ, exp-cty and lsc all hold. Suppose also that Θ is

regular. Then {P n} satisfies an LDP with rate function λ. When Θ is compact tightµ

holds automatically. When ψ takes only the value 0 the requirement that Θ is regular is

not needed.

It turns out that in Theorem 1 it is automatic that λ is a good rate function under

the extra conditions that X is regular and the rate functions ψ and λθ are good. This is

the essential content of the next theorem.

Theorem 2 Suppose ldpµ, tightµ and exp-cty all hold and that Θ and X are regular.

Suppose also that the following conditions hold.

goodψ: The rate function ψ in ldpµ is good.

goodλθ: For each θ ∈ Θ̃, the rate function λθ in exp-cty is good.

Then λ, defined at (2), is a good rate function and (P n) satisfies an LDP with rate

function λ.

The next result notes that often the rate function being good implies exponential

tightness. It shows that the hypothesis tightµ in Theorem 2, and later results, is super-

fluous when goodψ holds and Θ is locally compact or Polish. For locally compact spaces

the result is contained in Exercise 1.2.19 in Dembo and Zeitouni (1993). For Polish spaces

it is Lemma 2.6 in Lynch and Sethuraman (1987) — see also Exercise 4.1.10 in Dembo

and Zeitouni (1993).
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Lemma 3 Suppose Θ is either locally compact or Polish and goodψ holds. Then tightµ

holds.

The following condition is a natural extension of the property that λθ is lower semi-

continuous on X for each θ.

jnt-lsc: λθ(x) is jointly lower semicontinuous in (θ, x) ∈ Θ×X.

Lemma 3.1(i) in Dinwoodie and Zabell (1992) gives some general conditions for jnt-lsc

to hold; see also Lemma 3.2 in Chaganty (1997). The next result uses this condition to

provide one way to check that lsc holds.

Proposition 4 Suppose goodψ and jnt-lsc hold. Then lsc holds.

Theorems 1 and 2 approach the LDP for (P n) directly. The next result, which essen-

tially contains Theorem 2.3 in Chaganty (1997), approaches the question through a weak

LDP for the joint distributions (P̃ n).

Theorem 5 Suppose ldpµ, exp-cty and jnt-lsc hold. Suppose too that both Θ and X

are regular.

(a) Then (P̃ n) satisfies a weak LDP with rate function λθ(x) + ψ(θ). Furthermore,

when Θ is locally compact the LDP in ldpµ can be replaced by a weak LDP and, similarly,

when X is locally compact a weak LDP is enough in exp-cty.

(b) If in addition (P̃ n) is exponentially tight then the (full) LDP holds with a good

rate function and (P n) satisfies an LDP with the good rate function λ defined at (2).

It is desirable to have conditions that ensure that (P̃ n) is exponentially tight in order

to use the last part of the previous result. The next three Propositons, and Lemma

3, provide a variety of conditions for this. Before giving them one further definition is

needed. A family of sequences (of probability measures) is uniformly exponentially tight

if, in (1), for every α > 0 the same Oα can be used for every sequence.

Proposition 6 Suppose that tightµ holds. Suppose also that the following condition

holds.

uni-tight: For each θ ∈ Θ̃, the family of sequences {(P n
θ(n)) : θ(n) ∈ Θn, θ(n) → θ}

is uniformly exponentially tight.

Then (P̃ n) is exponentially tight.

Lemma 3.2 in Dinwoodie and Zabell (1992) gives conditions under which uni-tight holds

when, for each θ, P n
θ is the distribution (on a rather general space) of the average of

independent identically distributed variables. In Lemma 3 it is noted that tightµ can be

replaced by goodψ when Θ is locally compact or Polish. The next Proposition is in a

similar spirit.

Proposition 7 If X is locally compact then, in Proposition 6, uni-tight can be replaced

by goodλθ.
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The final result in this trio is not useful for getting the LDP for the marginal (P n)

from Theorem 5, since the conditions are the same as those in Theorem 2 except for a

more restrictive condition on X. However, it could be used to strengthen the weak LDP

for the joint distributions (P̃ n) to a (full) LDP.

Proposition 8 Suppose ldpµ, tightµ, exp-cty, goodψ and goodλθ hold, Θ is regular

and X is Polish. Then (P̃ n) is exponentially tight.

3 Proofs of Theorems 1 and 2 and Proposition 4

By definition, a function f on X is lower semicontinuous at x if for each c < f(x) there

is an open U containing x such that f(y) > c for every y ∈ U .

Lemma 9 If X is regular and f is lower semicontinuous on X then for every x and

c < f(x) there is a closed set Cx with x in its interior and f(y) > c for all y ∈ Cx.

Proof. Fix x and c < f(x). By the definition of lower semicontinuity, there is an open

set U containing x with f(y) > c for y ∈ U . Applying regularity, there is an open set Vx

containing x with its closure inside Ox. Take Cx to be the closure of Vx. ¤

Lemma 10 Θ̃ is closed.

Proof. Suppose that θ
(k)
n → θ(k) → θ with θ

(k)
n ∈ Θn. Take Ui from a countable open

neighbourhood base of θ. For some k(i) > k(i− 1), θk ∈ Ui for k ≥ k(i). Now Ui is also

an open neighbourhood of θk(i) and so there is an nk(i) with θ
(k(i))
n ∈ Ui for all n ≥ nk(i).

The sequence ϑn = θ
(k(i))
n ∈ Θn for nk(i) ≤ n < nk(i+1) converges to θ, and so θ ∈ Θ̃. ¤

Lemma 11 Suppose ldpµ and exp-cty hold. Let (θ, x) ∈ G∗ ⊂ Θ × X, where G∗ is

open. Then

lim inf
log P̃ n(G∗)

n
≥ −(λθ(x) + ψ(θ)).

In particular, for G open in X,

lim inf
log P n(G)

n
≥ − inf{λθ(x) + ψ(θ) : θ ∈ Θ, x ∈ G}.

Proof. The result is true when λθ(x) = ∞. Hence attention can focus on λθ(x) < ∞.

There are open sets O ⊂ Θ and U ⊂ X containing θ and x respectively with O×U ⊂ G∗.
Then

P̃ n(O × U) =

∫

O

P n
ϑ (U)dµn(ϑ).

For every ε > 0, there exists an open set Oε ⊂ O containing θ and an integer Nε such

that for n ≥ Nε and every γ ∈ Oε ∩Θn

P n
γ (U) > exp(−n[λθ(x) + ε]).
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To demonstrate this, suppose it fails. Then there are n(i) > n(i − 1) and θ(i) ∈ Θn(i)

with θ(i) → θ such that

P
n(i)
θ(i) (U) ≤ exp(−n(i)[λθ(x) + ε]),

and then

lim inf
log P

n(i)
θ(i) (U)

n(i)
≤ −λθ(x)− ε,

which contradicts the lower bound in the LDP in exp-cty.

Thus, for n ≥ Nε,

P̃ n(G∗) ≥ P̃ n(Oε × U) =

∫

Oε

P n
ϑ (U)dµn(ϑ)

=

∫

Oε∩Θn

P n
ϑ (U)dµn(ϑ)

≥ exp(−n[λθ(x) + ε])µn(Oε ∩Θn)

= exp(−n[λθ(x) + ε])µn(Oε)

and so, using ldpµ,

lim inf
log P̃ n(G∗)

n
≥ −λθ(x)− ε + lim inf

log µn(Oε)

n
≥ −λθ(x)− ε− ψ(θ).

The last part comes from taking G∗ = Θ×G, for then P̃ n(G∗) = P n(G). ¤

Lemma 12 Suppose ldpµ and exp-cty hold. Suppose too that tightµ holds and Θ is

regular. Let F ⊂ X be closed. Then

lim sup
log P n(F )

n
≤ − inf{λθ(x) + ψ(θ) : (θ, x) ∈ Θ× F}.

Proof. Fix F . Let c and d be such that

c < d = inf{λθ(x) + ψ(θ) : (x, θ) ∈ F ×Θ}.

Using tightµ, let O be such that

lim sup
log µn(O)

n
< −c

and let S be the (compact) complement of O. Then

P n(F ) =

∫

Θ

dP n
θ (F )dµn(θ) ≤

∫

S

dP n
θ (F )dµn(θ) + µn(O).

Let Λ(θ) = inf{λθ(x) : x ∈ F}. Let ε > 0 with c < 1/ε. Now let

Λε(θ) = min{Λ(θ)− ε, 1/ε} and ψε(θ) = min{ψ(θ)− ε, 1/ε}.
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For θ ∈ S, by exp-cty, there is an open set Oθ containing θ and an integer Nθ such that

for n ≥ Nθ and every γ ∈ Oθ ∩Θn

P n
γ (F ) ≤ exp(−nΛε(θ)).

To demonstrate this, suppose it fails. Then there are n(i) > n(i − 1) and θ(i) ∈ Θn(i)

with θ(i) → θ such that

P
n(i)
θ(i) (F ) > exp(−n(i)Λε(θ)),

and then

lim sup
log P

n(i)
θ(i) (F )

n(i)
≥ −Λε(θ),

which contradicts the upper bound in the LDP in exp-cty.

Furthermore, using the lower semicontinuity of ψ, by taking Oθ to be smaller if nec-

essary,

ψ(ϑ) > ψε(θ) for ϑ ∈ Oθ,

and, using regularity of Θ, there is an open set Vθ with closure V θ such that θ ∈ Vθ and

V θ ⊂ Oθ.

Now (Vθ : θ ∈ S) is an open covering of S. Since S is compact a finite subcover

(Vθ(i))1≤i≤k exists. Then, for sufficiently large n,

P n(F ) ≤ µn(O) +
k∑

i=1

∫

Vθ(i)

P n
ϑ (F )dµn(ϑ)

= µn(O) +
k∑

i=1

∫

Vθ(i)∩Θn

P n
ϑ (F )dµn(ϑ)

≤ µn(O) +
k∑

i=1

exp(−nΛε(θ(i)))µn
(
V θ(i)

)

≤ µn(O) +
k∑

i=1

exp(−nΛε(θ(i))) exp(−nψε(θ(i))).

Hence, since c < 1/ε,

lim sup
log P n(F )

n
≤ −min

{
min
1≤i≤k

{Λε(θ(i)) + ψε(θ(i))} , c

}

≤ −min

{
min
1≤i≤k

{Λ(θ(i)) + ψ(θ(i))− 2ε} , c

}

≤ −min {d− 2ε, c} .

Since c < d and ε > 0 are arbitrary, the result follows. ¤

Lemma 13 In Lemma 12, if ψ takes only the value 0 then the hypothesis that Θ is regular

is not needed.
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Proof. When ψ takes only the value 0 there is no need to introduce Vθ; it suffices to take

a finite subcover from (Oθ : θ ∈ Θ). ¤
Proof of Theorem 1. The last part of Lemma 11 gives the lower bound for open sets,

Lemma 12 gives the upper bound for closed sets. Finally, λ is lower semicontinuous by

assumption. Lemma 13 gives the simplification contained in the final assertion. ¤
Some further work is needed to deal with the conditions implying that λ is good, to

produce a proof of Thereom 2.

Lemma 14 Suppose ldpµ, exp-cty and goodψ holds. Fix c < ∞. Let K = {θ : ψ(θ) ≤
c} and

λ(y) = inf{λθ(y) + ψ(θ) : θ ∈ K}.
Then the sets {y : λ(y) ≤ c} and {y : λ(y) ≤ c} are the same, and λ and λ agree on this

set.

Proof. The set K is compact because ψ is good. Then, since λθ is non-negative, it is

easy to see that

λ(y) ≥ λ(y) ≥ min{λ(y), c},
which gives the result. ¤

Lemma 15 Suppose ldpµ, exp-cty, goodψ and goodλθ hold. Suppose also that both

Θ and X are regular. Then λ, given by (2), is a good rate function.

Proof. Take ε and α with 0 ≤ α < α + 2ε < ∞. Let K be {θ : ψ(θ) ≤ c = α + 2ε},
which is compact, by goodψ. Now, by Lemma 14,

{y : λ(y) ≤ α} = {y : λ(y) ≤ α}.

Denote this set by Lα and suppose α was selected so that Lα is not compact. Then

there exists a net {(θ(i), x(i)) : i ∈ I} ⊂ K × X such that {x(i)} ⊂ Lα, {x(i)} has no

convergent subnet and

λθ(i)(x(i)) + ψ(θ(i)) ≤ α + ε

for all i. Note that this implies that θ(i) ∈ Θ̃ because, by definition, λθ(x) = ∞ for

θ /∈ Θ̃. Since K is compact and first countable there is a subsequence (θ(ik), x(ik))

such that θ(ik) → θ, where θ ∈ Θ̃ since Θ̃ is closed. Furthermore, because ψ is lower

semicontinuous, lim inf ψ(θ(i)) ≥ ψ(θ) and ψ(θ) ≤ α + ε.

Take β = α+3ε. The level set of λθ given by Lβ
θ = {x : λθ(x) ≤ β−ψ(θ)} is compact,

by goodλθ. Hence, for large enough k0, C0 = {x(ik); k ≥ k0} must be in the complement

of Lβ
θ . Following exactly the argument in Lemma 2.1 in Dinwoodie and Zabell (1992),

C0 is closed and so, using the regularity of X and the compactness of Lβ
θ , there are open

sets separating C0 and Lβ
θ . Hence, there is an open set U containing C0 with closure C

in the complement of Lβ
θ .

Now take ϑ(i, n) ∈ Θn with ϑ(i, n) → θ(i). By the LDP lower bound in exp-cty,

lim inf
log P n

ϑ(n,i)(U)

n
≥ − inf{λθ(i)(x) : x ∈ U} ≥ ψ(θ(i))− α− ε.
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Hence, selecting suitable subsequences, there is an increasing sequence n(k) and ϑ(k) ∈
Θn(k) such that ϑ(k) → θ and

log P
n(k)
ϑ(k) (U)

n(k)
≥ ψ(θ)− α− 2ε.

By the LDP upper bound in exp-cty

lim sup
log P

n(k)
ϑ(k) (C)

n(k)
≤ ψ(θ)− β = ψ(θ)− α− 3ε,

because C is in the complement of Lβ
θ . Since U ⊂ C this contradicts the previous in-

equality. Therefore Lα must be compact. It is therefore also closed, since X is Hausdorff,

which means λ is lower semi-continuous. ¤
Proof of Theorem 2. The last part of Lemma 11 gives the lower bound for open sets,

Lemma 12 gives the upper bound for closed sets. Lemma 15 shows that λ is good rate

function under the stated conditions. ¤
Proof of Proposition 4. It must be shown that for every x and c < λ(x) there is a

neighbourhood U of x with λ(y) > c for every y ∈ U .

Fix x, c < λ(x) and ε > 0. Let K = {θ : ψ(θ) ≤ c}, which is compact because ψ is

good. Then, by Lemma 14, {y : λ(y) > c} and {y : λ(y) > c} are the same. Thus it will

be enough to show that the latter set contains a neighbourhood of x.

Let

λε
θ(x) = min{λθ(x)− ε, 1/ε} and ψε(θ) = min{ψ(θ)− ε, 1/ε}.

For each θ, because λθ(y) is jointly lower semicontinuous, and ψ is lower semicontinuous

there are open sets Oθ ⊂ Θ and Uθ ⊂ X containing θ and x respectively such that

throughout Oθ × Uθ

λϑ(y) > λε
θ(x) for (ϑ, y) ∈ Oθ × Uθ

and

ψ(ϑ) > ψε(θ) for ϑ ∈ Oθ.

The {Oθ : θ ∈ C} cover C, and so there is a finite subcover, (Oθ(i))1≤i≤k. Let U = ∩iUθ(i),

which is open and contains x. Then for y ∈ U

λ(y) ≥ min
i
{inf{λθ(y) + ψ(θ) : θ ∈ Oθ(i)}}

≥ min
i
{λε

θ(i)(x) + ψε(θ(i))}
≥ min{λ(x)− 2ε, (2ε)−1} > c,

provided ε is small enough. Then

x ∈ U ⊂ {y : λ(y) > c}

proving the result. ¤
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4 Proof of Theorem 5 and associated results

Proof of Theorem 5. First, the lower bound for open sets is contained in Lemma

11. Second, by ldpµ and jnt-lsc, λθ(x) + ψ(θ) is lower semicontinuous. To prove (a) it

remains to consider the upper bound for compact sets.

Fix F ⊂ Θ × X, compact. By lower semicontinuity and regularity, for each (θ, x)

there are open sets O ⊂ Θ and U ⊂ X containing θ and x respectively, with closures O

and U , such that

λϑ(y) > λε
θ(x) = min{λθ(x)− ε, 1/ε} for (ϑ, y) ∈ O × U

and

ψ(ϑ) > ψε(θ) for ϑ ∈ O.

By taking O to be smaller, if necessary, there is an integer N such that for n ≥ N and

γ ∈ O ∩Θn

P n
γ (U) ≤ exp(−nλε(x, θ)) and µn(O) ≤ exp(−nψε(θ)).

Thus, for n ≥ N ,

P̃ n(O × U) ≤
∫

O∩Θn

P n
ϑ (U)dµn(ϑ)

≤ exp(−nλε
θ(x))µn(O)

≤ exp(−nλε
θ(x)) exp(−nψε(θ)).

Hence

lim sup
n

log P̃ n(U ×O)

n
≤ −λε

θ(x)− ψε(θ).

As (x, θ) varies over F the corresponding sets U × O cover F . Taking a finite subcover,

using it to get an upper bound on P̃ (F ) and then letting ε go to zero completes the proof.

In the locally compact cases, O and U can be taken so that U and O are compact and

so a weak LDP is enough to bound the corresponding terms. This completes the proof

of (a).

Part (b) follows immediately from Lemma 1.2.18 in Dembo and Zeitouni (1993), which

gives the LDP for (P̃ n), and the contraction principle (given in Theorem 4.2.1 of Dembo

and Zeitouni (1993)) applied to the projection from Θ ×X to X, which gives the LDP

for (P n). ¤
Proof of Proposition 6. Fix α. Using tightµ, let O be such that

lim sup
log µn{O}

n
< −α

and let S be the (compact) complement of O. For θ ∈ Θ̃, let Uθ ⊂ X be a set with

compact complement such that for any θ(n) ∈ Θn with θ(n) → θ

lim sup
log P n

θ(n){Uθ}
n

< −α.
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The existence of Uθ is guaranteed by uni-tight. For θ /∈ Θ̃, let Uθ = X. Then there is

an open set Vθ, containing θ, and an integer Nθ such that for n ≥ Nθ and γ ∈ Vθ ∩Θn

P n
γ (Uθ) < exp(−nα).

Otherwise a suitable subsequence contradicts uni-tight.

The collection {Vθ : θ ∈ S} covers S. Take a finite cover (Vθ(i) : 1 ≤ i ≤ k) of S; then

let U be the set ∩iUθ(i) and K be its complement, which, as the union of a finite number

of compact sets is itself compact. Then (O ×X) ∪ (S × U) has the complement S ×K,

which is compact, and, for n large enough

P̃ n ((O ×X) ∪ (S × U)) ≤ µn(O) +
k∑

i=1

∫

Vθ(i)∩Θn

Pϑ(Uθ(i))dµn(ϑ)

< (k + 1) exp(−nα).

Hence

lim sup
log P̃ n(O ×X) ∪ (S × U))

n
≤ −α,

which suffices, since α was arbitrary. ¤

Lemma 16 Suppose X is locally compact and exp-cty holds. Then uni-tight holds

when goodλθ holds.

Proof. Locally compact means that for every x ∈ X there is Ux open and Cx compact

with x ∈ Ux ⊂ Cx. Fix θ ∈ Θ̃. Take β < α < ∞. Since λθ is good,

K = {x : λθ(x) ≤ α}
is compact. Let {Ux(i) : i = 1, 2, . . . , k} be a finite subcover of K taken from {Ux : x ∈ K}.
Now let O be the complement of the compact set ∪iCx(i), and let F be the complement

of the open set ∪iUx(i). Then F ∩K = ∅.
Consider {P n

θ(n)} where θ(n) ∈ Θn, and θ(n) → θ. Then, by exp-cty,

lim sup
log P n

θ(n)(O)

n
≤ lim sup

log P n
θ(n)(F )

n
≤ − inf

y∈F
λθ(y) ≤ −α < −β.

Since the set O is independent of the particular sequence (θ(n)) the result is proved. ¤
Proof of Proposition 7. This is an immediate consequence of Lemma 16. ¤
Proof of Proposition 8. The argument is borrowed from the last part of the proof

of Theorem 2.3 in Chaganty (1997). Fix α. Using tightµ, let O ⊂ Θ, with a compact

complement S, be such that

lim sup
log µn{O}

n
< −α/2.

By Theorem 2, (P n) satisfies an LDP with the good rate function λ. Then, by Lemma 3,

(P n) is exponentially tight and so there is an open set U ⊂ X with a compact complement

K such that

lim sup
log P n{U}

n
< −α/2.
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Then (O ×X) ∪ (S × U) has the complement S ×K, which is compact, and

lim sup
log P̃ n{(O ×X) ∪ (S × U)}

n
< −α/2− α/2 = −α.

¤

5 Possible extensions and refinements

This is a brief note of things that have not been attempted but seem to have some interest.

Clearly, it would be desirable to have some variant of Lemma 16 for Polish spaces.

However, the proof that a good rate function implies exponential tightness in a Polish

space seems to work only for a given sequence — see Lemma 2.6 in Lynch and Sethuraman

(1987). Hence, it does not produce the uniformity needed in uni-tight.

This note aims to generalize Theorem 2.3 in Dinwoodie and Zabell (1992). In that

Theorem, the mixing LDP, ldpµ, and the associated exponential tightness, tightµ, hold

automatically, while exponential continuity, exp-cty, and joint lower semicontinuity of

λθ(x), jnt-lsc, are taken as hypotheses. In a further study, Dinwoodie and Zabell (1993),

they give results that relax these assumptions and also their assumption that Θ is com-

pact, which is, in a sense, analogous to tightµ here. Their ideas could be taken up in

this context.

Finally, the approach to large deviations described in Puhalskii (2001) could be ex-

plored. Theorem 1.8.9 and Lemma 1.8.12 there are relevant. Roughly translated into the

language here, they give conditions on ψ(θ) and λθ(x) which make λθ(x) + ψ(θ) a rate

function on Θ×X.
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