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Abstract

The Kesten-Stigum Theorem for the one-type Galton-Watson process gives nec-
essary and sufficient conditions for mean convergence of the martingale formed by
the population size normed by its expectation. Here, the approach to this theorem
pioneered by Lyons, Peres and Pemantle (1995) is extended to certain kinds of
martingales defined for Galton-Watson processes with a general type space. Many
examples satisfy stochastic domination conditions on the offspring distributions and
suitable domination conditions combine nicely with general conditions for mean con-
vergence to produce moment conditions, like the X log X condition of the Kesten-
Stigum Theorem. A general treatment of this phenomenon is given. The applica-
tion of the approach to various branching processes is indicated. However, the main
reason for developing the theory was to obtain martingale convergence results in
branching random walk that did not seem readily accessible with other techniques.
These results, which are natural extensions of known results for martingales asso-
ciated with binary branching Brownian motion, form the main application.

1 Introduction

In the one-type Galton-Watson process with mean family size m ∈ (0,∞) the Kesten-
Stigum Theorem states that the non-negative martingale Wn, formed by the population
size normed by its expectation, converges in mean exactly when EN log+ N is finite,
where N is the family size. This result has been generalised to several more complicated
branching processes and a number of different approaches to the proof are known. The
original motivation for this study was the search for sharp results of this kind on the mean
convergence of a signed martingale that arises in the homogeneous branching random
walk. That signed martingale can be well approximated by other, non-negative, ones
and the method initiated by Lyons, Peres and Pemantle (1995), which exploits a change
of measure argument, seemed the most promising approach to the mean convergence
of these approximating martingales. That initial study discusses the one-type Galton-
Watson process but there have been several later papers dealing with other models. In
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particular, Athreya (2000), considers a general multitype homogeneous process, which is
fairly close to the framework adopted here. However, none of the existing results seemed
applicable to the problem we faced. Rather than develop the theory in the context of
the motivating example an attempt has been made to derive quite general results, which
apply to many different examples, including the one we are particularly interested in.
Hence, the most general part of this discussion has some of the character of a review and
so we will show that the results obtained apply to a variety of models. Sometimes results
that are technically new are obtained in this way, but that is not the main point.

Kesten-Stigum like results often contain the assertion that, when the martingale con-
verges in mean the process dies out on the trajectories where the martingale limit is zero.
No attempt is made here to seek general conditions for this to be so. MacPhee and Schuh
(1983) and D’Souza and Biggins (1992) give examples of (varying environment) processes
where this assertion fails.

The usual multitype branching process is considered, except that the type space, S,
is quite general. The process starts from a single individual of a specified type who
produces a family whose members also have types in S. These children produce families
in a similar way, and so on. It is convenient for the formulation to insist that every person
has a countably infinite number of children. More usual formulations can be embedded
in this one by having one of the types in S as a ‘ghost’-type, ∂, that always has all its
children of type ∂ and is interpreted as the person and all their descendants being absent.

To be a bit more formal about the sample space, let T be the labelled nodes of the
family tree in which every node has a countably infinite number of children. The basic
random object constructed is S, which is a S-valued function on the nodes of T and is
drawn from the sample space B = ST . Then S(ν) is the type of node ν ∈ T .

Reproduction depends on the parent’s type; given that type, there is an associated
distribution of the types of the children, called the family distribution. Let F = SN and
for f ∈ F write f = (f1, f2, . . .). The children of an individual are described by an element
f ∈ F, f1 is the type of the first child, f2 the type of the second and so on. A kernel,
Ps(df), from S to F specifies the reproduction mechanism. The family distribution for a
parent of type s is Ps and the corresponding expectation is denoted by Es.

The family tree is produced in the usual way from this specification of family distribu-
tions. Given the family history to generation n, individuals in that generation reproduce
independently of each other with the family distribution for each parent’s type. In this
way, the law for the branching process B is constructed from the kernel Ps(df) by using the
theorem of Ionescu Tulcea. Here, B is the law given the type of the initial ancestor, but,
for notational simplicity, the starting type is not explicitly recorded. The corresponding
expectation is EB.

A finite non-negative function H on S will be called mean-harmonic when H(s̃) > 0
for some s̃ and, with f = (f1, f2, . . .) ∈ F,

Es

[∑
i

H(fi)

]
= H(s) for all s ∈ S.

Thus mean-harmonic functions are ‘conserved’ on average under reproduction and so, as
we will now see, produce martingales.

Write |ν| for the generation of the node ν ∈ T , c(ν) for the children of ν and 0 for
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the initial ancestor. Let Gn be the σ-algebra generated by the first n generations. Also,
though the notation will not be needed for some time, let {νi : i = 0, 1, . . . , |ν|} be the
ancestry of ν ordered in the natural way, starting from ν0 = 0.

The functions {Wn} are defined for S ∈ B by

Wn(S) =
∑

|σ|=n

H(S(σ)) =
∑

|ν|=n−1

∑

σ∈c(ν)

H(S(σ));

then

EB [Wn| Gn−1] =
∑

|ν|=n−1

EB


 ∑

σ∈c(ν)

H(S(σ))

∣∣∣∣∣∣
Gn−1




=
∑

|ν|=n−1

ES(ν)

[∑
i

H(fi)

]
=

∑

|ν|=n−1

H(S(ν)) = Wn−1

and so Wn forms a non-negative martingale with respect to Gn. Let W = lim supn Wn;
of course W is actually limn Wn almost surely under B, but it is convenient to have it
defined everywhere. Let

SH = {s ∈ S : H(s) > 0},
which are the types for the initial ancestor that give W0 > 0. The main objective here
is to give conditions that determine when the martingale Wn converges in mean; that is
to obtain Kesten-Stigum like results for such martingales. Clearly, this question is only
interesting when the type of the initial ancestor lies in SH .

When Y is defined on S×F, EsY is defined, on S, by EsY =
∫

Y (s, f)Ps(df). Let Bn

be the projection of B onto the first n generations. Clearly, B1 is equivalent to S × F,
with the first component being the initial type and the second being the types of the first
generation. The definition of EsY therefore serves also for Y defined on B1.

Conditions are needed on the distribution of W1/W0 as the initial type, and hence
W0, varies. To describe these neatly, let

X(S) =
W1

W0

I(W0 > 0) + I(W0 = 0) for S ∈ B.

The variables W1 and W0 and X are all defined on the sample space B = ST but are
actually determined on B1. Hence, X can be defined in a consistent way also on S × F.
Specifically, with f = (f1, f2, . . .) ∈ F, X is given by

X(s, f) =

∑
i H(fi)

H(s)
I(H(s) > 0) + I(H(s) = 0). (1-1)

With this definition, Ps(X > x) makes sense.

One further ingredient is needed before a typical result can be stated. Let ζ =
{ζ0, ζ1, . . .} be the Markov chain on SH with the (proper) transition measure given by

1

H(s)
Es

[∑
i

H(fi)I(fi ∈ A)

]
for A ⊂ SH . (1-2)
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The fact that H is mean-harmonic ensures that this is a probability measure for any
s ∈ SH . Whenever ζ occurs, it is assumed that the type of the initial ancestor of the
branching process is in SH , so that W0 > 0, and ζ0 is given by this type.

The interplay between the development of the Markov chain ζ and the distribution
of X under Pζn often determines when Wn converges in mean. The next theorem, which
is a special case of Corollary 2.5 given later, gives the flavour. In it, and the remainder
of the paper, unadorned P and E will be used for probability and expectation on an
(undefined) auxiliary probability space. The essence of the result is that estimates of the
behaviour at infinity of a certain random function lead to moment conditions on suitable
bounding variables for the family size distributions which imply either EBW = W0 or
EBW = 0.

Theorem 1.1 For x > 0, let

A(x) =
∞∑
i=1

I(H(ζi)x > 1),

which is a random function of ζ. Suppose L is a positive increasing function that is slowly
varying at infinity; L may be different in (i) and (ii).

(i) Suppose that there is a random variable X∗ with

Ps(X > x) ≤ P (X∗ > x) for all s ∈ SH

and that supx>0{A(x)/L(x)} is bounded above, almost surely. If E[X∗L(X∗)] < ∞ then
EBW = W0.

(ii) Suppose that there is a random variable X∗ with

Ps(X > x) ≥ P (X∗ > x) for all s ∈ SH

and that, for some y, infx>y{A(x)/L(x)} is bounded below by a positive constant, almost
surely. If E[X∗L(X∗)] = ∞ then EBW = 0.

For orientation, it is worth casting the simplest, much studied, case into the present
framework, thereby illustrating that the type space often needs to be richer than in the
traditional formulations. Consider the (one-type) Galton-Watson process with family size
N satisfying EN = m ∈ (1,∞). The appropriate type space is S = {∂, 0, 1, 2, . . .}, where
∂ is a ‘ghost’ type and other nodes are typed by their generation. Hence, generically,
a person of type i gives birth to N children of type i + 1, and the remaining children
are of type ∂. Now the function H defined by H(n) = m−n and H(∂) = 0 is mean-
harmonic and then Wn is the usual martingale, given by normalising the population size
at generation n by its expectation, mn. Then ζi = i and so A(x) =

∑∞
i=1 I(H(ζi)x > 1) =∑∞

i=1 I(mi < x) ≈ log x/ log m. Furthermore both X∗ and X∗ can be N/m. Thus the two
parts of the theorem combine to show the martingale converges in mean exactly when
EN log+ N < ∞ and the limit is zero when this fails, which is a familiar Kesten-Stigum
Theorem.

The generality of the type space brings many particular branching processes within
the scope of the theorems. Some of these are discussed briefly later, to illustrate this.
However, the original motivation for this extension of earlier work was to study the
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convergence of a signed martingale for a certain boundary case in the homogeneous
branching random walk. We call that martingale a ‘derivative’ martingale for reasons
explained in Section 5.

We now summarise how the treatment will develop. The next section describes the
general results about the mean convergence of the martingale Wn. This is followed
immediately by a section discussing several simple applications of these general results.
Then, in Sections 4 and 5, the homogeneous branching random walk is introduced, the
derivative martingale is described and discussed and the results obtained about it are
stated. We need to consider the sum of H(S(ν)) over collections of nodes other than
the nth generation ones; specifically over what Jagers (1989) calls optional lines. Section
6 introduces the ideas and gives the results we need, which concern conditions for the
limit over an increasing sequence of such lines to be W , that is, to be the same limit as
when the lines are just formed by the generations. Sections 7 to 9 contains a discussion
of various examples: the branching random walk in a random, ergodic environment; the
multitype branching random walk; and the general branching (or CMJ) process. The
approach to the derivative martingale is through a coupling to branching random walk
with a barrier. That process is described and the relevant results about it obtained
in Section 10. The last four sections give the proofs of the results claimed in Sections
2, 5 and 6. In particular, a full description of the measure change at the heart of the
proof is deferred until Section 12, since the results described in Section 2 and, hence, the
applications of them do not require knowledge of it.

2 Results on mean convergence of Wn

The various general results on mean convergence are now recorded. The proofs are
in Sections 12 and 13. It is not necessary to read these proofs to follow the various
applications of the results. All the results in this section involve conditions on the Markov
chain ζ with transition kernel given at (1-2). It is not immediately clear that these
conditions translate to useful conditions on the family distributions. In fact they often
do and the main route for this is via Corollaries 2.5 and 2.7 given towards the end of the
section.

The first theorem is the basic one with the subsequent ones being deductions from it
that are designed to be easier to apply. Here, and throughout, x ∧ y = min{x, y}.

Theorem 2.1 Let X be given by (1-1) and ζ be the Markov chain with transition kernel
(1-2).

(i) If
∞∑

n=1

Eζn [X((H(ζn)X) ∧ 1)] < ∞, (2-1)

almost surely, then EBW = W0.

(ii) If, for all y > 0,

∞∑
n=1

Eζn [XI(H(ζn)X ≥ y)] = ∞, (2-2)

almost surely, then EBW = 0.
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(iii) If lim supn H(ζn) = ∞ almost surely then EBW = 0.

Writing x(a ∧ 1) = xaI(a < 1) + xI(a ≥ 1) splits (2-1) into two sums; the second of
these is then the one in (2-2) when y = 1. This indicates that (2-1) and (2-2) are quite
close; a necessary and sufficient condition for mean convergence of the martingale will
be obtained when there are no intermediate cases. It is possible to refine the first part
of this theorem slightly at some cost in elegance. The refinement is useful if X becomes
degenerate under Pζn as n increases, which is not usual. We will use this extension, given
in the next result, only for one-type varying environment Galton-Watson processes.

Proposition 2.2 In Theorem 2.1 the condition (2-1) can be replaced by the weaker con-
dition

lim inf
n

H(ζn) < ∞ and
∞∑

n=1

Eζn

[∑
i H(fi)

((∑
j 6=i H(fj)

)
∧ 1

)]

H(ζn)
< ∞ (2-3)

without changing the conclusion. When
∑

n H(ζn) < ∞ almost surely (2-1) and (2-3)
are equivalent.

One other refinement, which will not be used, is also worth recording. Recall that, by
assumption, the initial type is chosen with W0 > 0.

Proposition 2.3 If either (2-1) or (2-3) holds with positive probability (rather than al-
most surely) then EBW > 0. If (2-2) holds with positive probability then EBW < W0.

The proofs of these three results are given in Section 12 and the basic measure change
used in the proof is described there. The rest of the results described in this section arise
from using stochastic domination conditions to simplify the series in Theorem 2.1. Their
proofs, which require nothing from Section 12, are in Section 13.

In the first part of the next Theorem, note that A is a function of ζ, and so is random,
and that the expectation in (2-4) is only over the auxiliary random variable X∗, not over
A, which accounts for the qualification ‘almost surely’. The same is true of (2-5) in the
second part. For orientation, this Theorem can be read first assuming the function g
always takes the value one and the stochastic bounds hold for all types, that is with
F = S.

Theorem 2.4

(i) Suppose that there is a random variable X∗, a positive function g on S and a
subset F ⊆ S such that

Ps(X > x) ≤ P (g(s)X∗ > x) for all s ∈ F ⊂ S
and that ζ is eventually in F, almost surely. Let the increasing function A be defined by

A(x) =
∑

i

g(ζi)I(xg(ζi)H(ζi) ≥ 1),

If ∫ ∞

1

E [X∗A(X∗w)]

w2
dw < ∞ (almost surely) (2-4)
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then EBW = W0.

(ii) Suppose that there is a random variable X∗, a positive function g on S and a
subset F ⊆ S such that

Ps(X > x) ≥ P (g(s)X∗ > x) for all s ∈ F ⊂ S.

Let
A(x) =

∑
i

g (ζi) I (xg (ζi) H (ζi) ≥ 1) I(ζi ∈ F ).

If, for all w > 0,
E[X∗A(X∗w)] = ∞ (almost surely) (2-5)

then EBW = 0.

The next result shows that (2-4) and (2-5) become simple moment conditions when
the appropriate A can be bounded suitably.

Corollary 2.5 Let L be a positive increasing function that is slowly varying at infinity
and let δ be a constant satisfying δ ∈ [0, 1); L and δ may be different in (i) and (ii).

(i) In Theorem 2.4(i) suppose, instead of (2-4), that

sup
x>0
{A(x)/(xδL(x))} < ∞, almost surely

and E[(X∗)1+δL(X∗)] < ∞. Then EBW = W0.

(ii) In Theorem 2.4(ii) suppose, instead of (2-5) that, for some y,

inf
x>y
{A(x)/(xδL(x))} > 0, almost surely

and E[(X∗)1+δL(X∗)] = ∞. Then EBW = 0.

These results suffice for most purposes; indeed g can often be taken to be the identity.

However, for our main example the natural upper bounds on the reproduction take a
more complex form than that in Theorem 2.4(i) and so the next two results formulate a
straightforward extension. Roughly, they say that if the upper bound involves the sum
of several random variables it is enough to check moment conditions for them separately.

Theorem 2.6 Throughout, j ∈ {1, 2, . . . , J}. Suppose that there are random variables
X∗

j , positive functions gj on S and a subset F ⊆ S such that

Ps(X > x) ≤ P

(∑
j

gj(s)X
∗
j > x

)
for all s ∈ F ⊂ S (2-6)

and that ζ is eventually in F, almost surely. Let the increasing functions Aj be defined by

Aj(x) =
∑

i

gj(ζi)I(xgj(ζi)H(ζi) ≥ 1).

If

max
j

∫ ∞

1

E
[
X∗

j Aj(wX∗
j )

]

w2
dw < ∞ (almost surely) (2-7)

then EBW = W0.
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Corollary 2.7 Let Lj be positive increasing functions that are slowly varying at infinity
and let δj be constants satisfying δj ∈ [0, 1). In Theorem 2.6 suppose, instead of (2-7),
that

max
j

sup
x>0

{
Aj(x)/

(
xδjLj(x)

)}
< ∞ almost surely

and maxj E[(X∗
j )1+δjLj(X

∗
j )] is finite. Then EBW = W0.

3 Simple examples

Varying environment

Let S = {∂, 0, 1, 2, . . .} and let a person of type i give birth only to children of type i + 1
and ∂. Assume the initial ancestor is of type 0. Let Ni be the (generic) family size for a
person of type i, that is the number of children of type i + 1, and let ENi = mi. Then

H(n) =
n−1∏
i=0

1

mi

, H(0) = 1, H(∂) = 0

is mean-harmonic and the corresponding martingale is Zn/EZn, where Zn is the number
of nth generation people. In this example, ζn = n and H(ζn) = H(n) = 1/EZn, which
are not random; hence, (2-1), (2-2) and (2-3) are all deterministic. A routine application
of Proposition 2.2 gives the following result.

Corollary 3.1 Let N ′
i = Ni − 1. If infn EZn > 0 and

∞∑
i=1

E

[
Ni

mi

((
N ′

i

EZi+1

)
∧ 1

)]
< ∞

then EBW = 1.

It is worth noting that, since N ′
i < Ni and, for a suitable K > 0,

y ∧ 1 ≤ K

(
1− 1− e−y

y

)
,

this result contains the main result, Theorem 5, of Goettge (1975).

To illustrate the use of bounding variables, Corollary 2.5 yields the following result
for varying environment processes. The special case when X∗ and X∗ are the same and
{n(1), n(2), . . .} = N leads to a classical Kesten-Stigum result, as was already indicated.

Corollary 3.2

(i) Suppose that lim inf (EZn)1/n > 1 and there is a random variable X∗ such that

P (Nn/mn > x) ≤ P (X∗ > x).

If E[X∗ log+(X∗)] is finite then EBW = 1.

(ii) Suppose that there are positive integers {n(1), n(2), . . .} such that supj

(
EZn(j)

)1/j

is finite and there is a random variable X∗ with

P (Nn/mn > x) ≥ P (X∗ > x) for n ∈ {n(1), n(2), . . .}.
If E[X∗ log+(X∗)] is infinite then EBW = 0.
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Proof. This is an application of Corollary 2.5. For the first part, A(x) =
∑

n I(H(n)x ≥ 1)
and the condition on the means translates to the restriction that for some C > 0 and
a > 0, H(n) < Ce−an for all n; hence, A(x)/ log(x+2) is bounded above. For the second
part, taking F = {n(1), n(2), . . .} gives A(x) =

∑
j I(H(n(j))x ≥ 1); now the condition

on the means yields, for some C > 0 and a > 0, H(n(j)) > Ce−aj for all j, which implies
that infx>y A(x)/ log x is positive for y large enough. ¤

The growth conditions on EZn imposed here produce exponential decay rates for
H(n), leading to the X log X conditions. Other growth assumptions on the means will
yield alternative results; an observation already made, in his notation, by Goettge (1975).

Homogeneous, finite type space

Consider an irreducible, homogeneous, multitype, supercritical Galton-Watson process
with the finite type space {1, 2, . . . , p}, which, with the minor extra assumption of positive
regularity, is the framework in the original Kesten-Stigum Theorem (1966). Let S =
Z+ × {∂, 1, 2, . . . , p}, where the first component of S tracks the generation. If ρ is the
Perron-Frobenius eigenvalue of the mean matrix and v the corresponding strictly positive
right eigenvector then

H(n, j) = ρ−nvj, H(n, ∂) = 0

is mean-harmonic and Wn is a weighted sum of the numbers in the n generation, with
type j having weight ρ−nvj. Corollary 2.5 translates to one part of the multitype Kesten-
Stigum Theorem. To see this, note first that the second component of ζn forms an
irreducible Markov chain on {1, 2, . . . , p}. The sum of all the offspring variables can be
used for X∗ and any component of any one of them for X∗. In either case the associated
A(x) looks like log x; in the lower bound, this is a consequence of the chosen type having
a finite mean recurrence time under the chain on {1, 2, . . . , p}.

The full multitype Kesten-Stigum Theorem considers the convergence of the vector
formed by the numbers of each type, not just a particular weighted sum of the compo-
nents. The best way to get from one to the other, in this model and more complex ones,
is by establishing (by law of large number arguments) the stabilization of the proportion
of each type; see, for example, Section V.6 of Athreya and Ney (1972). Kurtz et al.
(1997) also discuss the multitype Galton-Watson process through the change of measure
argument.

Combining this example with the previous one leads to the multitype Galton-Watson
process in a varying environment, which was considered using other methods in Biggins,
Cohn and Nerman (1999). The parts of that discussion which consider martingales arising
from mean-harmonic functions, which are there just called harmonic, can certainly be
tackled using the ideas developed here.

It is worth looking briefly at a homogeneous Galton-Watson process on a general type
space Σ, with (σ1, σ2, . . .) being the types in a family. Suppose there is a function H̃ and

m ∈ (0,∞) such that Eσ

∑
i H̃(σi) = mH̃(σ). Augmenting the type space to include

generation, H(n, σ) = H̃(σ)/mn is mean-harmonic. Write ζn = (n, ζ̃n) to identify the
two components of ζ. Then ζ̃n is a Markov chain on Σ. Suppose ζ̃ has a stationary
distribution given by π(dσ) = H̃(σ)ν(dσ) for some measure ν. Let Y = m−1

∑
i H̃(σi).
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A little calculation shows that when ζ̃ has its stationary distribution (2-1) holds when
∫

Eσ

[
Y log+ Y

]
I(H̃(σ) > 0)ν(dσ) < ∞.

Hence, when this holds, Wn converges in mean for a set of initial types with probability
one under π.

Reproduction depending on family history

In the language adopted here, Waymire and Williams (1996) allow reproduction at a
node to depend on the reproduction of the node’s ancestors. This can be accommodated
easily by augmenting the type suitably. Recall that {νi : i = 0, 1, . . . , |ν|} is the ancestry
of ν. Let

S ′(ν) = {(σ, S(σ)) : σ = 0 or σ ∈ c(νi), i = 0, 1, . . . , |ν| − 1},
so that S ′(ν) contains all the information on the families of the ancestors of ν. Using S ′

as the new type allows reproduction to depend on the family history. There is an obvious
consistency condition — the relevant part of a child’s type must agree with the parent’s.
A very simple illustration is a one-type ‘Galton-Watson’ process in which a person’s
family size has a fixed mean m but a distribution that varies with the number of siblings
that person has. Then Corollary 2.5(i) implies that the martingale Zn/m

n will converge
in mean when the various family size distributions are dominated by a distribution with
a finite X log X moment.

4 The branching random walk

The branching random walk in various guises will provide the more substantial test cases
for the general results. The basic notation for it is introduced in this section,

Let Z =
∑

i δ(zi) be a point process on the reals, with points at {zi} and intensity
measure µ. Points may be multiple, since Z is a discrete measure with integer masses.
Also, it is worth saying explicitly that Z may have an infinite number of points. Branching
random walk is a branching process with types in R ∪ ∂ corresponding to position. The
point process describing the relative positions of the (non-ghost) children of a person at
s is distributed like Z.

For a fixed real θ > 0, let m(θ) =
∫

e−θzµ(dz) and assume this is finite; assume also
that −m′(θ), interpreted as

∫
ze−θzµ(dz), exists. Augment the types in R to include the

generation; then

H(n, s) = e−θs

n−1∏
i=0

1

m(θ)
=

e−θs

m(θ)n
, H(∂) = 0 (4-1)

is mean-harmonic.

Here and in all other examples the ‘ghost’ state ∂ contributes only zeros to the sums
defining Wn. Hence, sums over |ν| = n can and will be interpreted as being over the nodes
that occur, that is those that do not have type ∂. With this convention, the martingale
derived from this mean-harmonic function is

Wn =
∑

|ν|=n

e−θS(ν)

m(θ)n
. (4-2)
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This class of martingales has been studied by several authors, see, for example Kingman
(1975), Biggins (1977), Liu (1997) and Lyons (1997). In particular, Lyons (1997) studies
mean convergence using the techniques employed here; indeed, that paper was the main
inspiration for the general results in this one.

Using (1-2), a straightforward calculation shows that ζn = (n,
∑n−1

i=0 Yi), where {Yi}
are independent identically distributed, with the law that has derivative e−θx/m(θ) with
respect to µ, so that E[Yi] = −m′(θ)/m(θ). Hence

− log H(ζn) =
n−1∑
i=0

(θYi + log m(θ)) .

With these observations it is straightforward to apply Theorem 2.1. However, rather
than doing this, we include the result as a special case of the branching random walk in
a random environment. This is discussed in Section 7, which could be read now.

It is easy to reduce the general case to the one where θ = 1 and m(θ) = 1. Specifically,
given θ > 0 and Z, let

Z∗ =
∑

i

δ (θzi − log m(θ))

with points z∗i = θzi − log m(θ). Let the intensity measure of Z∗ be µ∗. Then
∫

e−xµ∗(dx) = 1 and

∫
xe−xµ∗(dx) = −

(
θ
m′(θ)
m(θ)

+ log m(θ)

)
.

The transformation of the type space (n, z) → (n, θz − n log m(θ)) takes a realization of
the branching process based on Z to one based on Z∗.

There is a direct correspondence between the branching random walk and what are
called multiplicative cascades. To make this correspondence, the type space R ∪ ∂, used
in the branching random walk, becomes [0,∞) by taking s to e−s, with the convention
that e∂ = 0. This transforms the addition of displacements along lines of descent, which
define the branching random walk, into multiplications. In the branching random walk,
let z(ν) be the displacement of ν from its parent and let A(ν) = e−z(ν); otherwise,
when the node ν has type ∂, let A(ν) = 0. Then the first generation point process Z
corresponds to A = (A1, A2, . . .), which is usually called the generator of the cascade and
m(1) = E

∫
e−zZ(dz) = E

∑
i Ai. This correspondence is discussed at greater length in

Liu (1998), for example.

5 The derivative martingale in branching random walk

The derivative martingale considered, which will be defined shortly, is the natural ana-
logue of a martingale arising in binary branching Brownian motion that is associated
with minimal-speed travelling wave of the KPP equation. Results on the convergence of
that martingale, discussed in Neveu (1988) and Harris (1999), lead naturally to questions
answered here for the branching random walk. In particular, the approach used by Harris
(1999) is adapted to yield convergence of the derivative martingale here.

Let

∂Wn =
∑

|ν|=n

(
S(ν) + n

m′(θ)
m(θ

)
e−θS(ν)

m(θ)n
.

11



Differentiating (4-2) with respect to θ gives −∂Wn and indicates that ∂Wn ought to be
a martingale, a fact easily verified by direct calculation. For this reason, we call ∂Wn a
derivative martingale, even if m(ξ) is not actually finite anywhere other than at ξ = θ so
that the derivative is fictional.

The case when log m(θ) = −θm′(θ)/m(θ) is particularly interesting and is the one we
focus on. Known results for the martingale Wn and its analogue for branching Brownian
motion indicate that this case is a boundary one. The convergence of derivative martin-
gales and related questions have been considered before; see, for example, Biggins (1991,
1992) and Barral (2000) for non-boundary cases. More relevantly, the convergence in
the boundary case has been considered by Kyprianou (1998) and Liu (2000), drawing on
results from a related functional equation; the approach here, which is more direct, gives
convergence under weaker conditions.

Making the reduction to θ = 1 and m(θ) = 1 described in Section 4 and then focusing
on the boundary case simplifies the assumptions about µ to

∫
e−xµ(dx) = 1,

∫
xe−xµ(dx) = 0 (5-1)

and ∂Wn becomes
∂Wn =

∑

|ν|=n

S(ν)e−S(ν).

Thus ∂Wn corresponds to the ‘harmonic’ function H(s) = se−s, which takes negative
values. Since ∂Wn is a signed martingale its convergence is not guaranteed. However,
the derivative martingale turns out to be naturally connected to a non-negative one
arising in the branching random walk with a barrier, which can be studied using the
results in Section 2. Kyprianou (2003) gives an extensive discussion of the use of change
of measure ideas for branching Brownian motion and of the use of a barrier to discuss
derivative martingales in that context. Here, the first result is that ∂Wn does converge
when a mild extra condition holds.

Theorem 5.1 Suppose (5-1) holds and
∫

x2I(x < 0)e−xµ(dx) < ∞.

The martingale ∂Wn converges to a finite non-negative limit, ∆, almost surely. Fur-
thermore,

∆ =
∑

j

e−zj∆j, (5-2)

where ∆j are copies of ∆ independent of each other and Z, and B(∆ = 0) is equal to
either the extinction probability or one.

Moment conditions are needed to describe when the limit ∆ is non-trivial. To state
these, let

X̃1 =
∑

j

zje
−zjI(zj > 0),

X̃2 =
∑

j

e−zj and X̃3(s) =
∑

j

e−zjI(zj > −s).

Note that X̃3(s) ↑ X̃2 as s ↑ ∞ and if Z is concentrated on (−s,∞) then X̃3(s) = X̃2.

12



Theorem 5.2 Suppose (5-1) holds and that
∫

x2e−xµ(dx) < ∞.
Let φ(x) = log log log x, L1(x) = (log x)φ(x), L2(x) = (log x)2φ(x), L3(x) = (log x)/φ(x)
and L4(x) = (log x)2/φ(x).

The limit ∆ in Theorem 5.1 has infinite mean, and so is not identically zero, when
both E[X̃1L1(X̃1)] and E[X̃2L2(X̃2)] are finite. The limit is identically zero when either
E[X̃1L3(X̃1)] is infinite or, for some s, E[X̃3(s)L4(X̃3(s))] is infinite.

There is a (small) gap between the slowly varying functions used in the two sets of
moment conditions in Theorem 5.2. In the proof, this gap arises from oscillations in the
ζ. The gap in the random variables, between using X̃2 in the first part and X̃3(s) in
the second, arises from the upper and lower bounds on the reproduction having slightly
different forms.

The equation (5-2) is an example of a smoothing transform, in the sense of Durrett
and Liggett (1983) and Liu (1998); the Laplace transform of ∆ satisfies an associated
functional equation. It was this functional equation that was important in the study of
the convergence of ∂Wn in Kyprianou (1998) and Liu (2000). In contrast, the results here
yield results about the functional equation as a by-product, as explained in Biggins and
Kyprianou (2001). For that study, it turns out to be important to consider the analogue of
∂Wn in which the sum is formed over sets of nodes other than the generations. Specifically,
the set of nodes C[t] is defined by individuals born to the right of t but with all their
antecedents born to the left of t. Thus C[t] focuses attention on nodes near t, regardless
of generation, thereby making sums over C[t] comparatively well behaved. The set of
nodes C[t] is what is called an optional line; the next section describes and develops the
necessary theory about such lines.

Define ∂WC[t] by

∂WC[t] =
∑

ν∈C[t]
S(ν)e−S(ν).

Results on optional lines and ideas used in the proof of Theorem 5.1 yield the following
theorem.

Theorem 5.3 Suppose that (5-1) holds and that
∫

x2I(x < 0)e−xµ(dx) < ∞. Let ∆ be
the limit of ∂Wn introduced in Theorem 5.1. Then ∂WC[t] converges to ∆ almost surely.

6 Optional lines

There are natural reasons to want to consider the sum of H(S(ν)) over collections of
nodes other than the nth generation ones. For relevant discussion, see, for example,
Jagers (1989), Chauvin (1991), Biggins and Kyprianou (1997) and Kyprianou (2000). In
particular, Jagers (1989) establishes the basic framework.

A function ` from the nodes T to {0, 1} identifies the set of nodes {ν : `(ν) = 1}. This
set, and the corresponding function `, is called a line if no member of it is the ancestor of
any other, so that (with the ancestry of ν being {νi : i = 0, 1, . . . , |ν|}) `(ν) = 1 implies
that `(νi) = 0 for all i < |ν|. Lines in this sense cut across the family tree, in (complete)
contrast to lines of descent; however, a line does not have to include a node from every
line of descent, so it does not have to cut all branches from the root. Although, formally,
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a line ` is a function on the nodes it will often be convenient to identify ` with set of nodes
where the function takes the value one. The σ-algebra G` contains full information on
the life-histories of all individuals that are neither in ` nor a descendent of any member
of `. For the line ` let

W` =
∑
ν∈T

`(ν)H(S(ν)).

Clearly Wn is W` when ` is the line formed by all nth generation nodes. The partial
ordering of T by ‘is an ancestor of’ (<) induces a partial order on lines, with `1 ≤ `2

when every member of `2 is a descendent (not necessarily strict) of some member of `1.
It therefore makes sense to speak of an increasing collection lines.

Informally, an optional line, L, is a random line with the property that its position is
determined by the history of the process up to the position of the line. More precisely, an
optional line L is a random line with the property that, for any fixed line `, {L ≤ `} ∈ G`.
Then the σ-algebra associated with the optional line L, GL, is the information on the
reproduction of all individuals that are neither on the line nor a descendent of any member
of the line. Jagers (1989) shows that the branching property, which is that, given Gn,
different individuals in generation n give rise to independent copies of the original tree,
extends to any optional line. Important questions are when WL defines a martingale as
L varies through some increasing collection of optional lines and, when it does, whether
its limit is the same as that of the martingale Wn.

Unfortunately, optional lines seem to be too general for some of the results sought
here, necessitating some restriction. The optional line L will be called simple when, for
all ν, the function L(ν) is measurable with respect to G|ν|; thus, whether ν is on the
line or not is determined by looking at the process up to generation |ν|. Let Aν be the
σ-algebra generated by {S(νi) : i = 0, 1, . . . , |ν|}. Then it is reasonable to call an optional
line very simple when, for all ν, the function L(ν) is measurable with respect to Aν ; then,
whether ν is on the line or not is determined by looking at the types in its ancestry.

For a very simple optional line the rule applied to a line of descent to determine
membership of the line can be applied to any trajectory of the Markov chain ζ introduced
at (1-2). Let N(ζ) be the, possibly infinite, stopping time obtained in this way. The next
lemma provides the key to the martingale property, which relies on expectation being
preserved. Later, in Lemma 14.1, a more general result is given which applies to simple
optional lines, rather than very simple ones, but which depends more heavily on the
measure change argument.

Lemma 6.1 When L is a very simple optional line EB [WL] = W0 if and only if N(ζ) <
∞ almost surely.

Lemma 6.1 (or its generalization Lemma 14.1) is useful for checking the hypothesis
that expectations are preserved in the next theorem. Recall that W is the almost sure
limit of the martingale (Wn,Gn). Let Ln be the (function corresponding to the) line
formed by members of L in the first n generations and the nth generation nodes with no
ancestor in L.

Theorem 6.2 Let {L[t] : t ≥ 0} be simple optional lines that are increasing with t and
satisfy EB

[
WL[t]

]
= W0 for every t. Then (WL[t],GL[t]) is a positive martingale. If, for

each n, WL[t]n tends to Wn, almost surely, as t → ∞ then WL[t] converges to W almost
surely.
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The final lemma in this section gives a fairly simple necessary condition for WL[t]n →
Wn, which is one of the hypotheses of Theorem 6.2.

Lemma 6.3 Let {L[t] : t ≥ 0} be (not necessarily simple) optional lines that are in-
creasing with t. If H(S(ν))L[t](ν) → 0 as t → ∞ for each ν with |ν| ≤ (n − 1) then
WL[t]n → Wn.

The results in Theorem 6.2 are easier to establish when the original martingale {Wn}
converges in mean. However, in our main applications mean convergence does not neces-
sarily hold.

There is an important particular case of increasing lines that sets the scene for a
discussion of the general branching process. Let

I[t](ν) = I(H(S(ν)) < e−t but H(S(νi)) ≥ e−t for i < |ν|),

which is the (very simple) optional line formed by picking out individuals whose value of
H is below e−t but whose antecedents’ values are not. Obviously these lines increase with
t. The following proposition is a straightforward application of previous three results.

Proposition 6.4 If lim infn H(ζn) = 0 then (WI[t],GI[t]) is a martingale converging to
W .

7 Branching random walk in a random environment

In the original formulation, the basic data are contained in a function from the type
space S into probability laws on SN, giving the family distributions {Ps : s ∈ S}. Denote
the set of such functions by L. In a sense, the collection of family distributions, that is
the element of L used, defines the external environment. Thus, a natural generalization
is to allow some choice from L; the varying environment process, already described,
can be viewed in this way. In a random environment the elements from L used in
successive generations usually form a stationary sequence; here a branching random walk
with a stationary environment sequence is considered. In this process, the law for the
point process Z varies; when that law is η, let the corresponding expectation be Eη and
let mη(θ) = Eη

[∫
e−θxZ(dx)

]
. Let the law used in generation n be λ(n) ∈ L, where

λ = {λ(n)} forms a stationary sequence with the marginal law P ∗; thus, λ is a realization
of the random environment. Assume that mη(θ) is finite and m′

η(θ) exists, P ∗ almost
surely. Finally, denote the conditional branching law given λ by B. It should really be
something like Bλ, but precision is sacrificed to simplicity.

Suppose the environment λ is given. Then, again augmenting the type space by the
generation,

H(n, s) = e−θs

n−1∏
i=0

1

mλ(i)(θ)
, H(n, ∂) = 0 (7-1)

is mean-harmonic for the branching process. Suppose the parent has reproduction law η,
then the variable X becomes X = (mη(θ))

−1
∫

e−θxZ(dx), where Z has law η.

The next lemma is a straightforward application of definitions.
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Lemma 7.1 Given λ, E(n,s)[f(X)] = Eλ(n)[f(X)]. Let E be the expectation over λ, then,
by stationarity, E[E(n,s)[f(X)]] =

∫
Eη[f(X)]P ∗(dη).

The following theorem extends some of the results in Biggins (1977) and Lyons (1997).
When θ = 0 it covers the Galton-Watson case and when the environment is fixed it
covers the homogeneous branching random walk. It is worth stressing that, since B is a
conditional law, the conclusions are conditional ones, holding almost surely as λ varies
over realisations.

Theorem 7.2 Assume that the environment λ is ergodic and that

κ =

∫ (
−θ

m′
η(θ)

mη(θ)
+ log mη(θ)

)
P ∗(dη)

exists.

(i) If κ < 0 then EBW = 0.

(ii) If κ > 0 and
∫

Eη [X log X] P ∗(dη) < ∞ then EBW = 1.

(iii) If λ is a collection of independent identically distributed variables, then EBW = 0
when (a) κ = 0 or when (b) 0 < κ < ∞ and

∫
Eη [X log X] P ∗(dη) = ∞.

Proof. Let the real random variable Yη have the law with density e−θx/mη(θ) with respect
to µη. In the same way as in Section 4,

− log H(ζn) =
n−1∑
i=0

(
θYλ(i) + log mλ(i)(θ)

)
,

where, given the λ(i), the Y ’s are independent variables. Then {(λ(n), Yλ(n))} is station-
ary and, by careful use of the pointwise ergodic theorem,

− log H(ζn)

n
→

∫ (
−θ

m′
η(θ)

mη(θ)
+ log mη(θ)

)
P ∗(dη) = κ.

When κ is less than 0, Theorem 2.1(iii) applies to show that W is zero, proving (i).

When κ is greater than zero, H(ζn) is eventually contained in an interval of the form
(0, dn), with d < 1. Then (2-1) in Theorem 2.1 is finite when

∞∑
n=1

Eζn [X((dnX) ∧ 1)] < ∞

and, by Lemma 7.1,

E

[ ∞∑
n=1

Eζn [X((dnX) ∧ 1)]

]
=

∫
Eη

[ ∞∑
n=1

X((dnX) ∧ 1)

]
P ∗(dη),

which is finite when
∫

Eη [X log X] P ∗(dη) < ∞. This proves (ii).

When κ = 0 and the {λ(i)} are independent, log H(ζn) is a zero-mean random walk
and so has its lim sup at infinity; thus, Theorem 2.1(iii) again shows that W is zero.
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When 0 < κ < ∞, H(ζn) is ultimately contained in an interval of the form (dn,∞),
with d < 1. Then, using Lemma 7.1, the series in (2-2) in Theorem 2.1 is infinite when

∞∑
n=1

Eλ(n)[XI(dnX ≥ y)] = ∞

and the terms here are bounded by one and are independent. Conditional Borel-Cantelli
now shows this holds exactly when

∫
Eη [X log X] P ∗(dη) = ∞. ¤

In fact, when κ = 0 the conditions can be relaxed. It is be enough that (λ(i), Yλ(i)) is
a Harris chain, for then − log H(ζn) is a zero mean random walk when sampled at visits
to the ‘base’ state.

The example can be taken further, allowing reproduction to depend on the node, not
just its generation. Each node ν has a law λ(ν) attached to it, with λ forming an ergodic
sequence down every line of descent. Now, augmenting the type by the node,

H(ν, s) = e−θs

|ν|−1∏
i=0

1

mλ(νi)(θ)
, H(ν, ∂) = 0

is mean-harmonic, given λ, and the arguments leading to Theorem 7.2 continue to apply,
but the martingale Wn is probably too complicated to be interesting.

This example is fairly simple because the mean-harmonic function, given at (7-1),
factorises, with one factor depending on the original type space and the other depending
only on the environment. Most multitype random environment branching processes do
not have this property.

8 Multitype branching random walk

In this process people have labels drawn from Σ and their reproduction is defined by a
point process on Σ× R with a distribution depending on the label of the parent. These
labels are usually called types, but, for clarity, we want to reserve ‘types’ for members of
S. The first component of the point process determines the distribution of that child’s
reproduction point process and the second component gives the child’s birth position
relative to the parent’s. In the notation here, the type space is S = Σ× R.

Let Z be a reproduction point process, with points {(σi, zi)} and let P̃σ and Ẽσ be
the probability and expectation associated with reproduction from a parent with label
σ ∈ Σ. Bearing in mind the reduction described at the end of Section 4, suppose there is
non-negative function H̃ on Σ such that

Ẽσ

[∑
i

H̃(σi)e
−zi

]
= H̃(σ).

Then H(σ, z) = H̃(σ)e−z is mean-harmonic and then, when the initial ancestor has label

σ, X = H̃(σ)−1
∑

i H̃(σi)e
−zi .

Write ζn = (ζ̃n, Sn) ∈ Σ × R to identify the two components of ζ. Then (ζ̃n, Sn −
Sn−1) is also a Markov chain. We assume that this latter Markov chain has a stationary
distribution under which it is ergodic and that this stationary distribution can be written
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in the form H(σ)p(σ, dz)ν(dσ), where ν is a suitable reference measure on Σ. Let π(dσ) =
H(σ)ν(dσ) be the stationary distribution for ζ̃. Assume β =

∫ ∫
zp(σ, dz)π(dσ) is well-

defined. Let Y =
∑

i H̃(σi)e
−zi , so that EσH̃(σ)X = EσY .

Proposition 8.1 If β > 0 and

∫
Ẽσ

[
Y log+ Y

]
I(H̃(σ) > 0)ν(dσ) < ∞ (8-1)

then Wn converges in mean for a set of initial labels (in Σ) with probability one under π.

Proof. Since H(ζn) = H̃(ζ̃n)e−Sn , (2-1) becomes

∞∑
i=1

Eζ̃i

[
Y ((e−SiY ) ∧ 1)

]

H̃(ζ̃i)
< ∞

If, ζ0 is drawn from the stationary distribution then {Sn} is an ergodic sequence and
Sn/n → β almost surely, e−Si can be bounded above by an exponentially decaying se-
quence, and then (2-1) holds when (8-1) holds. ¤

If the chain (ζ̃n, Sn−Sn−1) has a stationary distribution with the appropriate proper-
ties except that is not ergodic the result will still hold provided the expectation of S1−S0

under the stationary measure with respect to the tail σ-algebra is bounded below by a
positive constant, almost surely.

Kyprianou and Rahimzadeh Sani (2001) discuss martingale convergence for multitype
branching random walk with finite Σ using the measure change argument.

9 General branching processes

Olofsson (1998) uses the change of measure argument in the context of the general branch-
ing process; the theory developed on optional lines, provides the link between the general
results here and that framework.

Consider a homogeneous branching random walk, as described in Section 4, with
E

∫
e−αtZ(dt) = 1 for some α > 0 and β = E

∫
te−αtZ(dt) ≥ 0; then e−αs is mean-

harmonic, giving the martingale Wn =
∑

ν e−αS(ν)I(|ν| = n, S(ν) 6= ∂) with associated
martingale limit W . Then

C[t](ν) = I(S(ν) > t but S(νi) ≤ t for i < |ν|)

is the line formed by picking out individuals born to the right of t but with all their
antecedents born to the left t, which was introduced at the end of Section 5. It is just
a rewriting of I[αt], introduced at the end of Section 6, for this model, The general
branching process arises when Z gives birth times and so is concentrated on (0,∞); then
C[t] is called the coming generation.

Proposition 9.1 WC[t] is a martingale converging to W .
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Proof. Here, ζ is a random walk with mean β ≥ 0; hence, lim infn e−ζn = 0. Therefore
Proposition 6.4 applies. ¤

Let X =
∫

e−αtZ(dt). Theorem 7.2 gives (i) EBW = 1 if β > 0 and E [X log X] < ∞
and (ii) EBW = 0 if β = 0 or both β < ∞ and E [X log X] = ∞. When combined with
Proposition 9.1, this includes the conclusion of Theorem 2.1 in Olofsson (1998), which
deals with the case where Z is concentrated on (0,∞) and 0 < β < ∞; that paper should
be consulted for references to earlier treatments of this result and more context on the
general branching process.

The multitype branching random walk can be tackled in a similar way. All the general
assumptions and notation of Section 8 apply here. In particular, π is the stationary
distribution for ζ̃, where ζn = (ζ̃n, Sn) ∈ Σ×R. As previously, let C[t] be the line formed
by picking out individuals born to the right of t but with all their antecedents born to
the left t. Note that C[t] is no longer the same as I[t], introduced in Section 6, since the
latter is defined in terms of H.

Proposition 9.2 If β > 0, WC[t] is a martingale converging to W almost surely for a set
of initial types (in Σ) with probability one under π.

Proof. To use Lemma 6.1 we need to show that lim inf e−Sn = 0; this is so under the
stationary distribution for ζ, for then Sn is ergodic, and hence for a set of initial types
(in Σ) with probability one under π. Lemma 6.3 applies to complete the verification of
the hypotheses of Theorem 6.2. ¤

As in the one-type case, when the random walk is actually on (0,∞) these positions
can be interpreted as birth times, β > 0 is automatic, and then Propositions 8.1 and
9.2 becomes results about the general branching process on a general type space. Much
further discussion of this process can be found in Jagers (1989). The results here have
close connections with Theorems 6.1 and 6.5 there.

10 Branching random walk with a barrier

The homogeneous branching random walk based on the point process Z with points at
{zi}, described in Section 4, is modified by the removal of lines of descent from the
point where they cross into (−∞, 0], to give a process with an absorbing barrier. This
construction couples the process with a barrier, which is the topic of this section, to the
homogeneous one. This kind of process has been considered before; see Kesten (1978)
and Biggins et al. (1991). The results are developed to use in the study of the derivative
martingale, but they may be of independent interest.

Formally, the branching random walk with a barrier has the type space, corresponding
to position, S = [0,∞) and has the point process describing the positions of the children
of a person at s distributed like

∑
i

δ(s + zi)I(s + zi > 0);

thus, the relative positions are distributed like Z, except that children with positions in
(−∞, 0] do not appear. The ‘ghost’ state ∂ and the associated details are omitted from
the discussion and sums over |ν| = n are over the nodes not of type ∂.
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Let the intensity measure of Z be µ and assume that (5-1) holds. Now let Yn be
independent identically distributed variables with their law having density e−x with re-
spect to µ and let Sn be the random walk with increments {Yn}. For x > 0, let V (x)
be the expected number of visits Sn makes to (−x, 0] before first hitting (0,∞), and
let V (0) = 1. Some results from random walk theory are important for the motivation
and the formulation; these are recorded in the following lemma. The first two parts are
consequences of V being, essentially, the renewal function for the weak descending ladder
height process of {Sn}. The condition for the weak descending ladder variable to have a
finite mean is supplied by Doney (1980). The final part is Lemma 1 of Tanaka (1989).
Similar results can be found in Bertoin and Doney (1994). The relevant material is re-
viewed at the start of Biggins (2003), which develops the random walk results needed to
prove Theorem 10.6 stated at the end of this section.

Lemma 10.1 (i) As x →∞, V (x)/x converges to a positive constant, which is finite if∫
x2I(x < 0)e−xµ(dx) < ∞. (ii) When V (x)/x has a finite limit, a(x + 1) ≤ V (x) ≤

b(x + 1)for suitable a > 0 and b < ∞. (iii) E[V (Y1 + s)I(Y1 + s > 0)] = V (s).

Lemma 10.2 When (5-1) holds, H(s) = V (s)e−s is mean-harmonic for the branching
random walk with a barrier.

Proof. For any non-negative g,

Es


∑

|ν|=1

g(S(ν))


 = E

[∑
i

g(s + zi)I(s + zi > 0)

]

=

∫
g(z + s)I(s + z > 0)µ(dz).

Hence, using Lemma 10.1(iii) for the final equality,

Es


∑

|ν|=1

V (S(ν))e−S(ν)


 =

∫
V (z + s)e−z−sI(s + z > 0)µ(dz)

= e−sE[V (Y1 + s)I(Y1 + s > 0)] = e−sV (s),

as required. ¤
The martingale now being studied is

Wn =
∑

|ν|=n

V (S(ν))e−S(ν),

with its limit being W . The Markov chain ζ associated with this harmonic function is
considered next.

Lemma 10.3 Transitions of the Markov chain ζ from s have the law

V (z + s)

V (z)
I(z + s > 0)e−zµ(dz).
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Proof. Substitute for H and the reproduction process in (1-2). ¤
This transition mechanism, which has arisen previously, in, for example, Tanaka

(1989) and Bertoin and Doney (1994), can reasonably be called a random walk con-
ditioned to stay positive, for reasons explained in Bertoin (1993). Tanaka (1989) gives a
sample path construction of the process that can be used to give rather precise informa-
tion on the long term behaviour of ζ, which will be described in Theorem 10.7, but first
the following simple consequence of his results is recorded. Technically, Tanaka’s con-
struction gives the result when ζ0 = 0; the extension to other starting states is covered
in Biggins (2003).

Lemma 10.4 ζn →∞ as n →∞, almost surely.

This is enough for the application of the ideas on optional lines. In the same way as
in Section 9, C[t] is the line formed by picking out individuals born to the right of t but
with all their antecedents born to the left of t.

Theorem 10.5 (WC[t],GC[t]) is a martingale. It converges to W , which is the limit of the
martingale (Wn,Gn).

Proof. As before, C[t] are increasing very simple optional lines, and so in Lemma 6.1,
N is the first time ζ exceeds t; Lemma 10.4 now shows that N(ζ) < ∞ almost surely.
Furthermore, V (S(ν))e−S(ν)I(S(ν) > t) → 0 as t →∞ and so Lemma 6.3 applies. Hence
Theorem 6.2 applies to give the result. ¤

The next result is the main one about the martingale Wn.

Theorem 10.6 Assume
∫

x2e−xµ(dx) < ∞.
Let φ(x) = log log log x, L1(x) = (log x)φ(x), L2(x) = (log x)2φ(x), L3(x) = (log x)/φ(x)
and L4(x) = (log x)2/φ(x).

(i) If both E[X̃1L1(X̃1)] and E[X̃2L2(X̃2)] are finite then Wn converges in mean.

(ii) If E[X̃1L3(X̃1)] is infinite or, for some s, E[X̃3(s)L4(X̃3(s))] is infinite then
Wn → 0 almost surely.

The proof is an application of Corollary 2.5(ii), Corollary 2.7 and the following series
of results. It is assumed throughout the remainder of this section that, in addition to
(5-1),

∫
x2e−xµ(dx) < ∞.

First, the simple Lemma 10.4 needs to be supplemented by information on how fast
ζ goes to infinity; the following result, taken from Biggins (2003), provides relevant
estimates. It concerns the growth of D(x) =

∑
n I(ζn ≤ x).

Theorem 10.7 Let ϕ(x) = log log x for x > 3. For suitable (non-random) L and U

lim sup
x→∞

D(x)

x2ϕ(x)
≤ U < ∞ and lim inf

x→∞
D(x)

x2/ϕ(x)
≥ L > 0,

almost surely.
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One consequence of this, or Lemma 10.4, is that in applying the second parts of Theorem
2.4 and Corollary 2.5 it will be enough to consider the reproduction far above the barrier,
that is, F ⊆ S in those results can be taken as [s,∞) for any large s. The next lemma is
also a simple application of Theorem 10.7, providing another relevant estimate. It would
be easy to prove more, replacing V by a more general function, but the result will only
be needed for this case.

Lemma 10.8 Let D̃(x) =
∑

n V (ζn)−1I(ζn ≤ x) =
∫ x

0
V (z)−1D(dz) and, as previously,

let ϕ(x) = log log x for x > 3. For suitable (non-random) L̃ and Ũ

lim sup
x→∞

D̃(x)

xϕ(x)
≤ Ũ < ∞ and lim inf

x→∞
D̃(x)

x/ϕ(x)
≥ L̃ > 0.

Proof. Lemma 10.1(ii) easily yields D̃(x) ≥ D(x)/(b(x + 1)) and then the lower bound
follows immediately from the lower bound in Theorem 10.7.

Let U be the constant in the upper bound in Theorem 10.7 and let ε > 0. Let
D∗(x) = (U + ε)x2ϕ(x) for x > x0 > ee and D∗(x) = D∗(x0) otherwise, with x0, which is
random, large enough that D(x) ≤ D∗(x) for all x ≥ 0. Then, using Lemma 10.1(ii) and
Fubini,

D̃(x) =

∫ x

0

V (z)−1D(dz)

≤
∫ x

0

1

a(z + 1)
D(dz)

=
1

a

∫ x

0

(∫ ∞

z

dy

(y + 1)2

)
D(dz)

=
1

a

∫ ∞

0

D(x ∧ y)
dy

(y + 1)2

≤ 1

a

∫ ∞

0

D∗(x ∧ y)
dy

(y + 1)2

=
1

a

∫ x

0

1

z + 1
D∗(dz).

Substituting for D∗ and recalling that x0 > ee gives, for x > x0,

D̃(x) ≤ 1

a

∫ x

0

1

z + 1
D∗(dz)

=
D∗(x0)

a
+

U + ε

a

∫ x

x0

1

z + 1

(
2z log log z +

z

log z

)
dz

≤ D∗(x0)

a
+

(
U + ε

a

)
3x log log x,

which produces the upper bound. ¤
The next result derives suitable bounding variables for use in Corollary 2.5. It is here

that the gap, mentioned already, between using X̃2 in the upper bound but X̃3(s) as a
lower bound arises.
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Lemma 10.9 Under Ps (that is, when the parent is at s), for suitable 0 < a < b < ∞,

X ≤ b
X̃1

V (s)
+

b

a
X̃2, X ≥ a

X̃1

V (s)

and, for any fixed s0 and s ≥ 2s0,

X ≥ a

2b
X̃3(s0).

Proof. When the parent is at s, applying Lemma 10.1(ii),

X =

∑
j V (zj + s)e−(zj+s)I(zj + s > 0)

V (s)e−s

=

∑
j V (zj + s)e−zjI(zj > −s)

V (s)

≤
∑

j b(zj + s + 1)e−zjI(zj > −s)

V (s)

≤ b

V (s)

∑
j

zje
−zjI(zj > 0) +

b

a

∑
j

e−zj

= b
X̃1

V (s)
+

b

a
X̃2,

as required. Similarly

X ≥
∑

j a(zj + s + 1)e−zjI(zj > −s)

V (s)
≥ a

∑
j zje

−zjI(zj > 0)

V (s)
= a

X̃1

V (s)

and, for s > 2s0,

X ≥
∑

j a(zj + s + 1)e−zjI(zj > −s)

b(s + 1)

≥
∑

j a(zj + s + 1)e−zjI(zj > −s/2)

b(s + 1)

≥ a

2b

∑
j

e−zjI(zj > −s0) =
a

2b
X̃3(s0).

¤
Translating the first of these bounds into the language of Theorem 2.6 and Corollary

2.7, X∗
1 = bX̃1, g1(s) = V (s)−1, X∗

2 = bX̃2/a and g2(s) = 1. Thus the associated functions
are

A1(x) =
∞∑
i=1

V (ζi)
−1I(H(ζi)x ≥ V (ζi)) and A2(x) =

∞∑
i=1

I(H(ζi)x ≥ 1).

Exactly the same functions are needed in applying Corollary 2.5(ii). The next lemma
makes comparisons between A1 and A2 and suitable slowly varying functions.
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Lemma 10.10

lim sup
x→∞

A1(x)

(log x) log log log x
< ∞ and lim inf

x→∞
A1(x)

(log x)/ log log log x
> 0;

lim sup
x→∞

A2(x)

(log x)2 log log log x
< ∞ and lim inf

x→∞
A2(x)

(log x)2/ log log log x
> 0.

Proof. Since

A1(x) =
∞∑
i=1

V (ζi)
−1I(H(ζi)x ≥ V (ζi))

=
∞∑
i=1

V (ζi)
−1I(ζi ≤ log x),

the estimates in Lemma 10.8 translate immediately into the stated estimates of A1. For
the second part, note that

A2(x) =
∞∑
i=1

I(H(ζi)x ≥ 1) =
∞∑
i=1

I(V (ζi)e
−ζix ≥ 1)

=
∞∑
i=1

I(ζi ≤ log x + log V (ζi)).

Since, 0 ≤ log V (x) ≤ log b(x + 1) and for any ε > 0 there is an γ > 0 such that
log b(x + 1) ≤ γ + εx it follows that

∞∑
i=1

I(ζi ≤ log x) ≤ A2(x) ≤
∞∑
i=1

I ((1− ε)ζi ≤ log x + γ) ,

that is
D(log x) ≤ A2(x) ≤ D((1− ε)−1(log x + γ)).

Now, the results in Theorem 10.7 complete the required estimation of A2. ¤
Proof of Theorem 10.6. The upper bounds in Lemma 10.10, the first bound in Lemma

10.9 and Corollary 2.7 combine to prove Theorem 10.6(i). The lower bounds in Lemma
10.10, the second and third bounds in Lemma 10.9 and Corollary 2.5(ii) combine to prove
Theorem 10.6(ii). The estimates for A1 gives the moment conditions on X̃1, while those
for A2 gives conditions on X̃2 and X̃3(s). ¤

11 Proofs concerning the derivative martingale

The context here is described in Sections 4 and 5. It is a homogeneous branching random
walk satisfying (5-1) and

∫
x2I(x < 0)e−xµ(dx) < ∞ in which

Wn =
∑

|ν|=n

e−S(ν) and ∂Wn =
∑

|ν|=n

S(ν)e−S(ν).

Before starting the main proof, some results concerning Wn are noted for later use.
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Lemma 11.1 (i) EBW = 0, (ii) B(W = 0) = 1 and (iii) inf{S(ν) : |ν| = n} → ∞,
almost surely as n →∞.

This result is contained in Lemma 5 and the discussion at the end of Section 3 in Big-
gins (1977); the second and third assertions are immediate consequences of EBW = 0.
Informally, the last part says that every line of descent goes to infinity. A proof that
EBW = 0 without the side condition that

∫
x2I(x < 0)e−xµ(dx) is finite was given by

Lyons (1997), can also be obtained fairly directly from Theorem 2.1(iii) and is contained
in Theorem 7.2(iii)(a).

Proof of Theorem 5.1. Let Eb be the event that no node in the branching random
walk has a position to the left of −b; then, by Lemma 11.1(iii), Eb increases to an
event with probability one as b → ∞. Use the homogeneous branching random walk to
construct a branching random walk with a barrier at −b; on Eb the processes with and
without a barrier agree. To make the coupling precise, let Ĩb(ν) be one if the node ν is
retained in the process with a barrier at −b and zero otherwise. Now, by Lemma 10.2,
V (b)−1

∑
|ν|=n V (b + S(ν))e−S(ν)Ĩb(ν) is a positive martingale, which must converge to a

finite limit, denoted by Bb. Hence, using Lemma 10.1(i) and Lemma 11.1,

Bb =
1

V (b)
lim

n→∞

∑

|ν|=n

V (b + S(ν))e−S(ν)Ĩb(ν)

≤ C

V (b)
lim

n→∞

∑

|ν|=n

(b + S(ν))e−S(ν)I(b + S(ν) > 0)

=
C

V (b)
lim

n→∞
(Wnb + ∂Wn)

=
C

V (b)
lim

n→∞
∂Wn;

furthermore, equality holds on Eb. Thus ∂Wn converges to ∆ = C−1V (b)Bb on Eb.
Letting b →∞ completes the proof that ∂Wn has a finite, non-negative limit.

Let Sν be the function S on the sub-tree rooted at ν. Splitting on the first generation
shows that

∂Wn(S) =
∑

|ν|=1

S(ν)e−S(ν)Wn−1(S
ν) +

∑

|ν|=1

e−S(ν)∂Wn−1(S
ν).

Since
∫ |x|e−xµ(dx) < ∞,

∑

|ν|=1

e−S(ν) < ∞ and
∑

|ν|=1

|S(ν)|e−S(ν) < ∞

almost surely. Now, letting n go infinity, straightforward analysis drawing on Lemma
11.1(i) gives that

∆(S) =
∑

|ν|=1

e−S(ν)∆(Sν),

which is another way to write (5-2). Hence, B(∆ = 0) is a fixed point of the generating
function of the family size and so must have the stated property.
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Proof of Theorem 5.2. It has already been shown that V (b)Bb ≤ C∆ with equality
on Eb. When Theorem 10.6(i) holds, EBBb = 1 and then V (b) ≤ CEB∆ for any b; thus
EB∆ = ∞. Similarly, when the conditions of Theorem 10.6(ii) hold Bb, and hence ∆, is
zero on Eb for every b. ¤

Proof of Theorem 5.3. Note first that Proposition 9.1 shows that WC[t] and Wn have
the same limit; by Lemma 11.1, this limit is zero and so inf{S(ν) : ν ∈ C[t]} → ∞ as
t →∞. Now, applying Theorem 10.5 shows that on Eb

∆ =
V (b)

C
lim

n→∞

∑

|ν|=n

V (b + S(ν))

V (b)
e−S(ν)

=
V (b)

C
lim
t→∞

∑

ν∈C[t]

V (b + S(ν))

V (b)
e−S(ν)

= lim
t→∞

(WC[t]b + ∂WC[t]) = lim
t→∞

∂WC[t].

Letting b →∞ completes the proof. ¤
It is worth noting explicitly that, unlike (WC[t],GC[t]), (∂WC[t],GC[t]) is not a martingale

(though it is a submartingale).

12 Measure change and mean convergence

The method used to determine conditions for mean convergence of Wn has been employed
in various special cases of the framework adopted here. It is a natural extension and
refinement of that employed by Lyons, Peres and Pemantle (1995), Lyons (1997) and
Athreya (2000), and the connections between this treatment and those are not hard to
see. The key idea in all these papers is to exploit a change of measure to establish moment
conditions for the martingale to converge in mean; the actual measure change has much
longer history, as can be seen from the references in Lyons (1997). The discussion in
Waymire and Williams (1996) also has much in common with that here but it mostly
confines branching to a b-ary tree and so is not directed towards the classical Kesten-
Stigum Theorem; moreover, their framework, is at first sight, rather different from here
and so some points of contact are noted later in this section.

Recall that Bn is the projection of the sample space B onto the first n generations.
A branching process is a Markov chain with a state in Bn at time n and transition
probabilities defined by the nth generation nodes producing independent families, with
the distribution of the family of a node of type s being Ps. A realization of this chain
can be identified, in the obvious way, with an element of B, and the measure describing
the evolution can then be transferred to a measure on B; this gives B.

However, to describe the measure change neatly, it is useful to augment the basic space
by picking out a single line of descent. Formally, let ξ = (ξ0, ξ1, ξ2, . . .) be a sequence
drawn from T with ξ0 = 0, and ξn+1 ∈ c(ξn). Thus ξ defines a line of descent starting
from the initial ancestor. Let Ξ be the set of possible ξ. The new space is T = ST × Ξ
(= B× Ξ), its projection onto the first n-generations is Tn and a branching process will
now be a Markov chain with state in Tn at time n. The line of descent ξ will be called the
trunk — other names have also been used. (Informally, the “trunk” is what distinguishes
the “bushes” which make up B, in which every branch is similar, from the “trees” which
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make up T, in which the “trunk” has special status.) Let Fn be the σ-algebra generated
by the first n steps of the Markov chain, that is, the information on the development for
the first n generations, including the trunk. Let F∗

n be the σ-algebra generated by Fn−1

and Gn, so that F∗
n is generated by the trunk up to generation n− 1 and the tree up to

generation n; hence Fn−1 ⊂ F∗
n ⊂ Fn.

The new measure depends on H, the particular mean-harmonic function under con-
sideration. Since we deal with a single such H, it will be convenient for many calculations
to let h be the composition of H and S, a function from nodes to the non-negative reals.

In producing the measure on this enlarged space, ξ is produced by an extra randomi-
sation. Thus, the various types reproduce as before and then ξn+1 is picked from the
children of ξn, with probabilities proportional to the children’s values of h when this
makes sense. More precisely,

P (ξn+1 = ν|F∗
n+1) =

h(ν)I(ν ∈ c(ξn))∑
σ∈c(ξn) h(σ)

, when
∑

σ∈c(ξn)

h(σ) ∈ (0,∞), (12-1)

and is some arbitrary, but fixed, probability distribution on c(ξn) otherwise. This defines
a branching process with a trunk; call its probability law P and its expectation EP. There
is no reason at the moment to use h to weight the possibilities in picking the trunk, but
one will emerge. By construction, integrating out ξ maps (T,P) to (B,B). Since the
theorems in Section 2 involve EBW it is worth noting explicitly that EBW = EPW .

Another approach to the construction starts by doubling the type space, working with
S × {1, 2}. Types in S1 reproduce as before, producing only types in S1. For s ∈ S2,
use Ps to generate a family from SN; given the family, pick child j with probability
H(Sj)/(

∑
i H(Si)) when 0 <

∑
i H(Si) < ∞, and pick a child according to some fixed,

arbitrary distribution otherwise; the chosen child is given its type (as generated in SN)
in S2, every other has its type in S1. Nodes in S2 give ξ.

An auxiliary branching process with a trunk, which will turn out to result from the
change of measure, is described next. To define the development of this Markov chain,
assume the states for the first n generations are known. Then, reproduction from nth
generation nodes not on the trunk, that is from ν ∈ {σ : |σ| = n, σ 6= ξn}, is exactly
the same as in P (or B). On the trunk, when S(ξn) = s, the types of the children
of ξn are given by generating a family from SN with the law having (Radon-Nikodym)
derivative

∑
i H(Si)/H(s) with respect to Ps when H(s) > 0 and, for completeness, 1

when H(s) = 0. Finally, given the types of the children of ξn, ξn+1 is chosen exactly as
previously, that is as in P — see (12-1). Call the resulting measure Q. To express the
derivative more neatly, and for later developments, let X(ν) be defined as X for the tree
initiated by ν. More precisely, let Sν be the function S on the sub-tree rooted at ν and
let

X(ν) = X(Sν) = I(h(ν) > 0)

∑
σ∈c(ν) h(σ)

h(ν)
+ I(h(ν) = 0).

Then, in constructing Q, the types of the children of ξn are given by generating a family
with the law having derivative X(ξn) with respect to PS(ξn).

It is easy to confirm that under Q the types on the trunk, given by ζn = S(ξn), develop
as a Markov chain on SH with the transition kernel (1-2) when the initial ancestor has a
type in SH .
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The approach is based on the following theorem which is a corollary of a result in Dur-
rett (1996, Theorem 4.3.3) — see also Athreya (2000). The notation employed suggests
how the result will be used.

Theorem 12.1 Suppose P and Q are two probability measures and Gn are increasing
σ-algebras. Suppose further that, for all n, Q is absolutely continuous with respect to P
on Gn, with density Wn. Let W = lim supn Wn. Then
(i) Wn is a P-martingale and 1/Wn is a Q-martingale;
(ii) EPW = 1 if and only if Q(W < ∞) = 1;
(iii) EPW = 0 if and only if Q(W = ∞) = 1.

Any non-negative, mean one, martingale defines a change of probability measure (from P
to Q above) on Gn; clearly, if Q is tractable it can be used to study the mean convergence
of the original martingale through the last two parts of the lemma. Note that this measure
change only concerns P and Q on the σ-algebra generated by {Gn}, leaving some freedom
over the definition of P and hence of Q. In the branching context, the introduction of
the trunk exploits this freedom.

Returning to branching processes, recall that, X(ν) =
∑

σ∈c(ν) h(σ)/h(ν) when h(ν) >

0 and is one when h(ν) = 0. Therefore, when H(s) > 0,

EP [X(ν)|S(ν) = s] =
1

H(s)
Es

[∑
i

H(Si)

]
= 1,

because H is mean-harmonic, and, when H(s) = 0, EP [X(ν)|S(ν) = s] = 1 by definition.
By exploiting the trunk, a simpler martingale than Wn can be constructed, by forming a
product (down ξ) using these adapted positive terms with expectation one. In fact it is
useful to define these products for any node. To do this, recall that {νi : i = 0, 1, . . . , |ν|}
is the ancestry of ν. Now (with 0.∞ = 0), let

W (ν) =

|ν|−1∏
i=0

X(νi).

It turns out that W (ξn) is a martingale linking, in the sense of Theorem 12.1, P and
Q. The probability laws P and Q are constructed from conditional probabilities (using
the Theorem of Ionescu Tulcea) defined on Tn+1 given the state in Tn. The following
straightforward lemma on derivatives, from measure theory, is the key to the relationship
between these measures.

Lemma 12.2 Let P be a probability measure on U, p a conditional probability from
U to V and P ∗ the resulting joint probability measure. Let Q, q and Q∗ be defined
similarly, with Q absolutely continuous with respect to P and, for each u ∈ U, q absolutely
continuous with respect to p. Then

dQ∗

dP ∗ =
dq

dp

dQ

dP
.

Lemma 12.3 W (ξn) is the derivative of Q with respect to P on Fn.
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Proof. The result is true for n = 0, assume it also holds for n = r. Let pr+1 and qr+1

be the conditional probability measures on Tr+1, given the state in Tr, that are used in
the construction of P and Q respectively; both pr+1 and qr+1 are products of the family
distributions appropriate to the types of the nodes. To generate the (r + 1)th generation
under Q, all nodes except ξr use the same law as in P and ξr uses the law which has
the derivative X(ξr) with respect to PS(ξr). Thus, overall, the derivative dqr+1/dpr+1 is
X(ξr). Let Pr and Qr be P and Q restricted to Fr; then, applying Lemma 12.2,

dQr+1

dPr+1

=
dqr+1

dpr+1

dQr

dPr

= X(ξr)W (ξr) = W (ξr+1)

as required. ¤
Recall that Gn is the σ-algebra generated by the first n generations without the trunk.

The idea now is to integrate out ξ to get the derivative of Q with respect to P on Gn.
For this to work, using h to choose the trunk in (12-1) turns out to be critical. The next
lemma gives the essential formula for the integration; it computes P[ξn = ν|Gn] on the
set {W (ν) > 0}.

Lemma 12.4 For a fixed ν, let n = |ν| ≤ r. Then

W (ν)P[ξn = ν|Gr] =
h(ν)

h(0)
, P almost surely.

Proof. Fix r. The result is true for n=0. Suppose it is true for (n−1). Let σ{F∗
n,Gr} be

the σ-algebra generated by the two components; recall that F∗
n is information on the first

n− 1 generations including the trunk and on the n generation without the trunk. Then

P(ξn = ν|σ{F∗
n,Gr}) = P(ξn = ν|F∗

n) = p(ν)I(ξn−1 = νn−1)

where {p(ν) : ν ∈ c(νn−1)} is a proper probability distribution that is Gn-measurable.
Thus, taking expectations conditional on Gr, multiplying by W (ν) = X(νn−1)W (νn−1)
and using the result for (n−1),

W (ν)P(ξn = ν|Gr) = X(νn−1)W (νn−1)p(ν)P(ξn−1 = νn−1|Gr)

= p(ν)X(νn−1)h(νn−1)/h(0).

When h(νn−1)X(νn−1)∈(0,∞), h(νn−1)X(νn−1) =
∑

σ∈c(νn−1) h(σ) and, from (12-1),

p(ν) =
h(ν)∑

σ∈c(νn−1) h(σ)
=

h(ν)

h(νn−1)X(νn−1)
;

substitution now shows that the formula holds. This leaves cases where h(νn−1)X(νn−1) /∈
(0,∞). If X(νn−1) = 0 then h(ν) = 0. If h(νn−1) = 0 then, since

E


 ∑

σ∈c(νn−1)

h(σ)

∣∣∣∣∣∣
Gn−1


 = h(νn−1) = 0,

h(ν) = 0 almost surely. Hence the formula holds in both these cases. Finally,

EP[h(νn−1)X(νn−1)] ≤ EP[Wn−1] = h(0) < ∞
so that I(h(νn−1)X(νn−1) = ∞) is P-null. ¤
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Proposition 12.5 Wn/h(0) is the derivative of Q with respect to P on Gn. Hence The-
orem 12.1 applies.

Proof. By Lemma 12.3, the derivative sought equals EP[W (ξn)|Gn]. For a fixed ν with
|ν| = n,

EP[W (ξn)I(ξn = ν)|Gn] = EP[W (ν)I(ξn = ν)|Gn] =
h(ν)

h(0)
,

by Lemma 12.4; thus

EP[W (ξn)|Gn] = EP


 ∑

|ν|=n

W (ν)I(ξn = ν)

∣∣∣∣∣∣
Gn


 =

Wn

h(0)
.

¤
The next theorem underpins all the results given in Section 2, but, unlike them, it

requires knowledge of the measure change that goes beyond defining the Markov chain ζ.

Let c′(ξn) be the children of ξn excluding ξn+1 and let, by analogy with X and X(ξi),

X ′ =

∑
ν∈c′(0) h(ν)

h(0)
and X ′(ξi) =

∑
ν∈c′(ξi)

h(ν)

h(ξi)
.

so that h(ξi)X(ξi) = h(ξi)X
′(ξi) + h(ξi+1). Then h(ξi) tracks the value of H along the

types in the trunk, while X ′ concerns the reproduction along the trunk.

Theorem 12.6

(i) If

Q

(
lim inf

n
h(ξn) < ∞,

∞∑
i=1

h(ξi)X
′(ξi) < ∞

)
> 0 (12-2)

or

Q

( ∞∑
i=1

h(ξi)X(ξi) < ∞
)

> 0, (12-3)

which implies (12-2), then EPW > 0. Furthermore EPW = h(0), and so {Wn} converges
in P-mean, when the probability in either (12-2) or (12-3) is one.

(ii) If

Q
(

lim sup
n

h(ξn)X(ξn) = ∞
)

> 0 (12-4)

then EPW < h(0) and so {Wn} does not converge in P-mean. Furthermore, EPW = 0
when this probability is one.

Proof. Recall that Sν is the function S on the sub-tree rooted at ν. By partitioning the
sum, using the sub-trees emanating from the siblings of ξ1, ξ2, . . . , ξn−1,

Wn(S) =
∑

|ν|=n

h(ν) = h(ξn) +
n−1∑
i=1

∑

ν∈c′(ξi)

h(ν)
Wn−i(S

ν)

h(ν)
.
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LetH be the σ-algebra generated by the reproduction of the members of the trunk. (Tech-
nically, in the language of Jagers (1989), with L the optional line formed by all non-trunk
children of the nodes forming the trunk, H is the pre-L σ-algebra.) The construction of
Q means that away from the trunk it looks just like P, and so EQ[Wn−i(S

ν)|H] is h(ν)
when ν ∈ c′(ξi). Since 1/Wn(S) is a positive martingale under Q, Wn(S) converges to
W , Q almost surely. Then, by Fatou,

EQ[W |H] = EQ[lim
n

Wn(S)|H]

≤ lim inf
n


h(ξn) +

n−1∑
i=1

∑

ν∈c′(ξi)

h(ν)




= lim inf
n

h(ξn) +
∞∑
i=1

∑

ν∈c′(ξi)

h(ν)

= lim inf
n

h(ξn) +
∞∑
i=1

h(ξi)X
′(ξi) ≤

∞∑
i=1

h(ξi)X(ξi),

Q almost surely. Hence (12-3) implies (12-2) and either implies that Q(W < ∞) > 0; in
addition, Q(W < ∞) = 1 when either probability is one. Theorem 12.1 now gives the
conclusion to the first part.

For the second half, note that

Wn(S) =
∑

|ν|=n

h(ν) ≥
∑

ν∈c(ξn−1)

h(ν) = h(ξn−1)X(ξn−1)

and so

Q(W = ∞) ≥ Q
(

lim sup
n

h(ξn)X(ξn) = ∞
)

.

A further application of Theorem 12.1 completes the proof. ¤
Waymire and Williams (1996) consider multiplicative cascades, which are described

briefly at the end of Section 4, on the b-ary tree with the b non-zero terms in A being
conditionally independent given the family history of the parent and each having mean
one. Then m(1) = b. Augmenting the type space with the generation, so that it becomes
Z+×[0,∞), the function H(n, s) = s/bn is mean-harmonic for the cascade, corresponding
directly to (4-1) with θ = 1. Now Theorem 12.6 here can be seen to be very closely related
to Corollary 2.3 in Waymire and Williams (1996), with the basic measure change being
their Theorem 2.3.

Observe that h(ξn), X ′(ξn−1) and X(ξn−1) are all Fn-measurable; therefore, the series∑
h(ξi)X

′(ξi) and
∑

h(ξi)X(ξi) are amenable to the following standard result, proved
by truncation and conditional Borel-Cantelli. It and the lemma after it translate the
conditions in Theorem 12.6(i) to ones involving {H(ζn), Pζn}, the development of the
types of the trunk and the associated family laws, to give the main theorem, Theorem
2.1.

Lemma 12.7 Suppose Yi are non-negative variables that are adapted to the increasing
σ-algebras Fi. Then

I

(∑
i

Yi < ∞
)

= I

(∑
i

E[Yi+1 ∧ 1|Fi] < ∞
)

almost surely.
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Lemma 12.8 Let Y be a non-negative function on B1 and Y (ν) the corresponding func-
tion of the reproduction from node ν. Then

EQ[Y (ξi)|Fi] = ES(ξi)[XY ] = Eζi
[XY ].

In particular, for any non-negative g, EQ[g(X(ξi))|Fi] = Eζi
[Xg(X)]

Proof. This is no more than the definitions. Firstly, S(ξi) = ζi. Secondly, under Q, ξi

produces children typed according to the law that has derivative X(ξi) with respect to
PS(ξi). ¤

Proof of Theorem 2.1. Apply Lemma 12.7 and Lemma 12.8 to the series in (12-3) for
the first part; for the second part, conditional Borel-Cantelli and Lemma 12.8 show that
(2-2) implies that the probability in (12-4) is one. Since H(ζn) = H(S(ξn)) = h(ξn), the
final part follows from Theorem 12.6(ii) and the inequality h(ξi)X(ξi) ≥ h(ξi+1). ¤

Proof of Proposition 2.2. First, integrate out ξ1 to get, for any non-negative g,

EQ[g(X ′)|G1] =

(
1∑

|ν|=1 h(ν)

) ∑

|ν|=1

g

(∑
|σ|=1 h(σ)− h(ν)

h(0)

)
h(ν)

Then, with this as Y , Lemma 12.8 gives,

EQ[g(X ′(ξn))|Fn] = EQ[Y (ξn)|Fn]

= Eζn [XY ]

=
Eζn

[∑
i H(fi)g

(∑
j 6=i H(fj)/H(ζn)

)]

H(ζn)
.

Now apply Lemma 12.7 to the series in (12-2) to give the first part. Since

h(ξi) (X(ξi)−X ′(ξi)) = h(ξi+1) = H(ζi+1)

convergence of
∑

n H(ζn) implies that the series in (12-2) and (12-3), and hence (2-1) and
(2-3), converge together. ¤

Proof of Proposition 2.3. This is like that of Theorem 2.1, but now translating
Theorem 12.6 when the probabilities in (12-2), (12-3) and (12-4) are positive, rather
than one. ¤

The collection {W (ν) : ν ∈ T } is, essentially, a positive T -martingale; see Waymire
and Williams (1996), and references therein. That discussion takes such martingales,
also called multiplicative cascades, as the fundamental object, whereas the discussion
here takes multitype branching process.

13 Stochastic domination

The conditions in Theorem 2.1 can be simplified to moment conditions in many examples
where there are bounds on Ps(X > x) that are uniform in the type s. The proofs are
independent of the discussion in Section 12. The next two elementary lemmas establish
the framework. The first is well-known and proved by integration by parts.
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Lemma 13.1 If for all x P (X > x) ≤ P (Y > x) then, for any increasing non-negative
function f , E[f(X)] ≤ E[f(Y )].

Lemma 13.2 Suppose η is a measure on (0,∞) and A(x) = η(0, x]. Then

∫
((x/y) ∧ 1)η(dy) =

∫ ∞

1

A(wx)

w2
dw.

Proof.
∫

((x/y) ∧ 1)η(dy) =

∫ (
I(x ≥ y) + xy−1I(x < y)

)
η(dy)

= A(x) + x

∫ ∞

x

y−1η(dy)

= A(x) + x

∫ ∞

x

(∫ ∞

y

z−2dz

)
η(dy)

= A(x) + x

∫ ∞

x

z−2(A(z)− A(x))dz

=

∫ ∞

1

w−2A(wx)dw,

as required. ¤
Proof of Theorem 2.4. Since, for h > 0, x((hx) ∧ 1) = x(I(hx ≥ 1) + hxI(hx < 1))

is an increasing function of x > 0, applying Lemma 13.1 shows that, when ζi ∈ F ,

Eζi
[X((H(ζi)X) ∧ 1)] ≤ E [g(ζi)X

∗((H(ζi)g(ζi)X
∗) ∧ 1)] ,

where the expectation on the right is with respect to X∗ only. By assumption, ζi ∈ F
eventually, with probability one, and so (2-1) in Theorem 2.1 holds when

E

[∑
i

g(ζi)X
∗((H(ζi)g(ζi)X

∗) ∧ 1)

]
< ∞.

Now let η be the measure with atoms g(ζi) at (g(ζi)H(ζi))
−1 and note that

E

[∑
i

g(ζi)X
∗((H(ζi)g(ζi)X

∗) ∧ 1)

]
= E

∫
X∗((X∗/y) ∧ 1)η(dy).

Applying Lemma 13.2 completes the proof of (i).

In a similar way, considering the series in (2-2),

∞∑
i=1

Eζi
[XI(H(ζi)X ≥ y)] ≥

∞∑
i=1

Eζi
[XI(H(ζi)X ≥ y)]I(ζi ∈ F )

≥
∞∑
i=1

E[g(ζi)X∗I(H(ζi)g(ζi)X∗ ≥ y)]I(ζi ∈ F )

= E[X∗A(X∗/y)],

giving (ii). ¤
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Proof of Corollary 2.5. Suppose A(x)/(xδL(x)) is bounded above by C. Then

∫ ∞

1

A(wx)

w2
dw ≤ C

∫ ∞

1

(wx)δL(wx)

w2
dw

= CxδL(x)

∫ ∞

1

wδ

w2

L(wx)

L(x)
dw,

and, using the representation theorem for slowly varying functions, for suitably small ε
and then sufficiently large x

∫ ∞

1

wδ

w2

L(wx)

L(x)
dw ≤

∫ ∞

1

wδ

w2
(1 + ε)wεdw = (1 + ε)(1− δ − ε)−1.

Applying these bounds in (2-4) proves (i). For (ii), note first that, since L(xw)/L(x) → 1
as x → ∞, E[(X∗)1+δL(X∗w)] is infinite when E[(X∗)1+δL(X∗)] is. Now, suppose that
A(x)/(xδL(x)) is bounded below by C > 0 for x ≥ y; then

E[X∗A(X∗w)] ≥ CwδE[(X∗)1+δL(X∗w)I(X∗w ≥ y)],

which is infinite when E[(X∗)1+δL(X∗w)] is. Now apply (2-5). ¤
Proof of Theorem 2.6. For any positive h and xj, crude bounding gives,

(∑
j

xj

)((
h

∑
j

xj

)
∧ 1

)
≤ J2

∑
j

xj((hxj) ∧ 1)

and so, for any s ∈ F ,

Es [X((hX) ∧ 1)] ≤ J2
∑

j

E
[
gj(s)X

∗
j ((hgj(s)X

∗
j ) ∧ 1)

]
.

Hence, using this and Lemma 13.1, for ζi ∈ F

Eζi
[X((H(ζi)X) ∧ 1)] ≤ E

[(∑
j

gj(ζi)X
∗
j

)((
H(ζi)

∑
j

gj (ζi) X∗
j

)
∧ 1

)]

≤ J2
∑

j

E
[
(gj(ζi)X

∗
j )((H(ζi)(gj(ζi)X

∗
j )) ∧ 1)

]
.

Hence (2-1) in Theorem 2.1 holds when the sum over i of each of the terms on the right
here is finite. These translate to tests on the Aj as in the proof of Theorem 2.4(i). ¤

Proof of Corollary 2.7. This uses the same method as that used for Corollary 2.5(i).
¤

14 Proofs relating to Optional lines

The proof of the first result here, which is the promised generalization of Lemma 6.1,
relies in an important way on the measure change discussed in Section 12; the rest of the
discussion is independent of Section 12 except for the notational convention that h(ν) is
H(S(ν)) and the assumption that the initial type is in SH so that W0, which is also h(0),
is positive.
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Let N be the generation in which ξ hits the line L; more precisely, define N by
L(ξN) = 1, with N = ∞ when there is no such N . Often it will be easy to see when N
is finite under Q. This definition is consistent with that of N(ζ) used in Lemma 6.1.

It is worth noting that the definition of an optional line used in Kyprianou (2000) to
prove a particular case of Lemma 14.1 is intermediate between those of simple and very
simple.

Lemma 14.1 When L is a simple optional line, Q(N < ∞) = EBWL/h(0), and so
EB [WL] = h(0) if and only if Q(N < ∞) = 1.

Proof. The steps in the next calculation are justified by: conditioning on Fn and using
Lemma 12.3 to move from EQ to EP; conditioning on Gn and using that L is a simple
optional line; and, finally, using Lemma 12.4.

Q(N = n) = EQ


∑

|ν|=n

L(ν)I(ξn = ν)




=
∑

|ν|=n

EP
[
L(ν)W (ν)I(ξn = ν)

]

=
∑

|ν|=n

EP
[
L(ν)W (ν)P(ξn = ν|Gn)

]

=
∑

|ν|=n

EP

[
L(ν)

h(ν)

h(0)

]
.

Summing over n now gives the result since EB[WL] = EP[WL]. ¤
Recall that Ln is the line formed by members of L in the first n generations and the

nth generation nodes with no ancestor in L.

Lemma 14.2 For any (not necessarily simple) optional line L, EB [Wn|GL] = WLn.

Proof. Recall that Wr(S
ν) is Wr defined on the sub-tree rooted at ν. Then

Wn =
∑

|ν|≤n

Ln(ν)Wn−|ν|(S
ν)

and, when Ln(ν) = 1, EB
[
Wn−|ν|(Sν)

∣∣GL

]
= h(ν). Hence

EB [Wn|GL] = EB


 ∑

|ν|≤n

Ln(ν)Wn−|ν|(S
ν)

∣∣∣∣∣∣
GL




=
∑

|ν|≤n

Ln(ν)EB
[
Wn−|ν|(S

ν)
∣∣GL

]

=
∑

|ν|≤n

Ln(ν)h(ν) = WLn .

¤
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In general Ln need not be optional when L is and so WLn need not be Gn-measurable.
However, for simple optional lines it is, and then, as the next two lemmas show, much
more can be said.

Lemma 14.3 Let L be a simple optional line. Then Ln is a simple optional line and
(WLn ,Gn) is a positive martingale with a limit at least WL. When EB [WL] = h(0), (i)
WLn = EB [WL|Gn], (ii) the martingale (WLn ,Gn) converges in mean to WL, and (iii)
EB [Wn|GL] = EB [WL|Gn].

Proof. It is immediate from the definitions that Ln is a simple optional line. Hence WLn

is Gn-measurable. Let AL,n be the line formed by members of the nth generation that
are neither in L nor have an ancestor in L, so that

AL,n(ν) = I(|ν| = n)
n∏

i=0

(1− L(νi)).

Then AL,n is a simple optional line when L is a simple optional line. By definition,

WLn+1 =
∑

|ν|≤n


L(ν)h(ν) + AL,n(ν)

∑

σ∈c(ν)

h(σ)


 .

Now, when |ν| = n,

EB


 ∑

σ∈c(ν)

h(σ)

∣∣∣∣∣∣
Gn


 = h(ν)

and, because L is simple, everything else in the expression for WLn+1 is Gn-measurable.
Thus,

EB
[
WLn+1|Gn

]
=

∑

|ν|≤n

(L(ν) + AL,n(ν)) h(ν) = WLn ,

and so is a martingale, and limn WLn ≥ WL. Hence EB [WLn ] = EB [WL0 ] = h(0) and

WLn = lim
m→∞

EB [WLm |Gn] ≥ EB [WL|Gn] ;

EB [WL] = h(0) forces equality here, which in turn implies that WLn converges to WL.
Hence, WLn = EB [WL|Gn] and, by Lemma 14.2, WLn = EB [Wn|GL], proving (iii). ¤

Theorem 6.7 of Jagers (1989) gives similar conclusions to the next lemma, but for
general optional lines.

Lemma 14.4 Let L′ and L be simple optional lines with L′ ≤ L and EB [WL] = h(0).
Then EB [WL|GL′ ] = WL′.

Proof. Let N ′ and N be the generations where ξ hits L′ and L respectively. Then N ′ ≤ N
and so, by Lemma 14.1, EB [WL] = h(0) implies that EB [WL′ ] = h(0). Since L′ ≤ L,
GL′ ⊂ GL and so, by Lemma 14.2,

WL′n = EB [Wn|GL′ ] = EB [EB [Wn|GL] |GL′ ] = EB [WLn|GL′ ] .
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Letting n go to infinity and applying Lemma 14.3(ii) completes the proof. ¤
Proof of Lemma 6.3. Let G∗ be the σ-algebra generated by {GL[t] : t ≥ 0}. Lemma

14.2 implies that (WL[t]n ,GL[t]) is a positive martingale, and so WL[t]n converges as t →∞,
to EB [Wn|G∗]. Now

WL[t]n ≤

Wn +

∑

|ν|≤n−1

L[t](ν)h(ν)




and
∑

|ν|≤n−1 h(ν) =
∑n−1

i=0 Wi which is finite. Hence, letting t →∞ and using dominated
convergence,

EB [Wn|G∗] = lim
t→∞

WL[t]n ≤ Wn

which implies that EB [Wn|G∗] = Wn, as required. ¤
Proof of Theorem 6.2. The martingale property follows immediately from Lemma

14.4. Let W ′ be the limit of WL[t]. By Lemma 14.3(i), EB
[
WL[t]|Gn

]
= WL[t]n ; letting

t →∞, Fatou gives EB [W ′|Gn] ≤ Wn and then letting n →∞ gives W ′ ≤ W . Again, let
G∗ be the σ-algebra generated by {GL[t] : t ≥ 0}. By Lemma 14.3(iii), EB

[
WL[t]|Gn

]
=

EB
[
Wn|GL[t]

]
; letting n and then t go to infinity shows that W ′ ≥ EB [W |G∗]. Hence

EB [W ′ −W ] ≥ 0, but W ′ ≤ W . Hence W ′ = W , completing the proof. ¤
The conclusions of Theorem 6.2 are much easier to obtain when Wn converges in mean

to W as the proof of the next result illustrates.

Theorem 14.5 Suppose Wn converges in mean to W . Let {L[t] : t ≥ 0} be optional lines
that are increasing with t and satisfy EB

[
WL[t]

]
= h(0) for every t. Then (WL[t],GL[t]) is

a positive martingale, WL[t] converges in mean. The martingale’s limit is W if, for each
n, WL[t]n tends to Wn, almost surely, as t →∞.

Proof. Lemma 14.2 gives EB
[
Wn|GL[t]

]
= WL[t]n . Now, letting n → ∞ shows that

EB[W |GL[t]] ≥ WL[t]; both sides have expectation h(0), forcing equality. Standard mar-
tingale theory now gives that WL[t] converges to EB [W |G∗]. When WL[t]n tends to Wn,
letting t →∞ and then n →∞ in EB

[
Wn|GL[t]

]
= WL[t]n gives EB [W |G∗] = W . ¤
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